
ML � Machine Learning� 2025fev année 2024-2025

TME 5 - Perceptron et SVMs

You must have completed TME 2 before starting this one. You will need the cost functions and their

gradients that you implemented in the previous session.

Perceptron and Linear Class

Implement the function perceptron_loss(w,x,y) that returns the perceptron cost (max(0,−y <
x.w >)) and its gradient perceptron_grad(w,x,y).

To be more generic and �exible, instead of implementing a script version of gradient descent, we will

code a Linear class that will group di�erent possible variants. A class skeleton is provided in the source

�le : it mainly contains the constructor that initializes the model parameters (the cost used loss, its

gradient loss_g, the number of gradient descent iterations max_iter, the step size eps, the weight

vector w). Complete the skeleton by implementing :

• The method predict(self,datax) which infers the label of the data datax (i.e., calculates

sign(< w.x >)).
• The method score(self,datax,datay) which calculates the percentage of correct classi�cations

on the given dataset.

• The method fit(self,datax,datay) which performs gradient descent for max_iter iterations

with a step size eps, using the cost loss and its gradient loss_g. To implement a perceptron, you

just need to pass the perceptron cost and gradient when constructing the object. Your method

should also store the history of costs over iterations.

As in the previous TME, your methods should take matrices of data as input (not single data points).

Test your class on last week's example.

USPS Data

The USPS dataset consists of handwritten digit images represented by grayscale pixel matrices of size

16× 16. Code is provided to load and visualize these data (load_usps and show_usps).

Load the data and visualize some examples. Select two classes (e.g., 6 vs. 9) and train a perceptron

on them. Visualize the obtained weight matrix using show_usps. What do you notice ? How do you

interpret the result ?

Observe the weight matrix when training the perceptron with a single class (e.g., 6) against all other

classes.

Using test data, plot learning and test error curves as a function of the number of iterations (you can

modify the fit function of the Linear class to take test data as input). Do you observe over�tting ?

Mini-batch and Stochastic Descent

Modify your fit method to support stochastic descent (examples are randomly ordered and only one

example is used to compute the gradient and update weights) and mini-batch descent (the dataset

is divided into small random batches of m examples, the gradient is averaged over each batch before

updating).

To fairly compare the di�erent variants, max_iter will denote the number of epochs rather than the

number of gradient updates (an epoch means all examples have been seen once). Note that stochastic

descent is a mini-batch descent of size 1, while batch descent is a mini-batch descent of size equal to

the number of examples.

ML � Machine Learning� 2025fev page 2

Compare convergence speed, particularly in relation to noise in the dataset.

Projections and Regularization

To increase the expressivity of the linear model, we will use projections.

Implement the function proj_poly(datax) which returns the degree-2 polynomial projection of the

data : (1, x1, x2, . . . , xd, x
2
1, x1x2, . . . x

2
d).

Also implement proj_biais(datax) which adds a column of 1s in the �rst column of the data to

introduce a bias.

Modify your constructor to potentially take a projection as a parameter. Modify fit to project data

before training and predict accordingly.

Test your polynomial projection on arti�cial data from gen_arti of type 1 and 2. Plot the decision

boundaries.

Code the function proj_gauss(datax, base, sigma) that performs a Gaussian projection of datax

onto the points (b1, . . . ,bb) of base with a parameter sigma : for a given data point x in datax, its

representation is given by (e−∥x−b1∥2/2σ, e−∥x−b2∥2/2σ, . . . , e−∥x−bb∥2/2σ). Experiment with the three

arti�cial datasets.

Is it better to have many or few points in the projection base ? Should σ be large or small ? Which

points have the most weight ? Represent them in the �gures and plot the decision boundaries.

You can also study the e�ect of a margin and penalization on the weights of the Gaussian projection :

introduce a new cost function hinge_loss(w, x, y, alpha, lambda) that returns max(0, α − y <
w,x >)+λ∥w∥2 and its gradient hinge_loss_grad. Observe the e�ect of alpha and lambda, particu-

larly on the checkerboard problem.

What are the connections with SVM?

SVM and Grid Search

The scikit-learn module (sklearn : http://scikit-learn.org/stable/documentation.html) is the

main statistical learning module in Python. The submodule sklearn.linear_model provides an im-

plementation of the perceptron, sklearn.neighbors an implementation of k-NN, and sklearn.tree

decision trees. Quickly explore these implementations and compare, for example, the results of your

previous practicals with those from sklearn.

Ensure you have the latest version installed ! Otherwise, run pip install -U sklearn �-user

The sklearn.svmmodule provides an implementation of SVMs. Using datasets from previous practicals

(2D arti�cial datasets and digit recognition), explore di�erent kernels (linear, Gaussian, polynomial)

and various kernel parameterizations.

In particular, study the decision boundaries and the support vectors�the points whose coe�cients are

non-zero. How does their number vary depending on the kernel and its parameters ? Is this behavior

expected ? What do you observe in the linear case ?

To �nd the best parameters, we perform cross-validation over a grid of parameters (grid search). For

di�erent kernels and varying numbers of training examples, perform a grid search to �nd the optimal

parameters. Plot the error curves for training and testing. Are the results consistent ?

To visualize decision boundaries in 2D, you can use the following code snippet :

svm = sk l e a rn . svm .SVC(p r obab i l i t y = True , . . .)
. . .
def plot_front ie re_proba (data , f , s t ep =20):

gr id , x , y = make_grid (data=data , s tep=step)
p l t . contour f (x , y , f (g r i d) . reshape (x . shape) , 255)

p lot_front ie re_proba (data , lambda x : svm . predict_proba (x) [: , 0] , s t ep=50)

ML � Machine Learning� 2025fev page 3

String Kernel

The string kernel is a kernel de�ned on words Σ∗ from an alphabet Σ. For a word s, we denote |s| as its
length : s = s1, s2, . . . , s|s|, and s[i : j] as the substring si, . . . , sj of s. We say that u is a subsequence

of s if there exists a sequence of indices i = (i1, . . . , i|u|) with 1 ≤ i1 < i2 < . . . < i|u| ≤ |s| such that

uj = sij for j = 1, . . . , |u|, denoted as u = s[i]. The length l(i) of the subsequence in s is i|u| − i1 + 1.

The projection used is the set of coordinates {ϕu(s) =
∑

i:u=s[i] λ
l(i)} u ∈ Σ∗ with λ ≤ 1.

Thus, we can de�ne the kernel Kn(s, t) =
∑

u∈Σn < ϕu(s), ϕu(t) >=
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j] λ

l(i)+l(j).

Implement a string kernel, visualize the similarity matrix on text examples from di�erent authors, and

test learning performance.

