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TME 2 - Gradient Descent

The goal of this TME is to experiment with gradient descent in the context of linear regression and lo-
gistic regression. Throughout the session, the input space has d dimensions, the labels are real numbers
(for linear regression) or in {−1, 1} (for logistic regression), the functional search space is parameterized
by a weight vector w ∈ Rd, and n denotes the number of examples. We will not consider bias in this
TME (no weight w0).

Attention !
All your functions in this session should be able to take matrices of examples and label vectors as
input—not just a single example and label. We will follow these conventions : X ∈ Rn,d, w ∈ Rd,1,
Y ∈ Rn,1.
There are some pitfalls when manipulating matrices with numpy :

• The operator ∗ allows element-wise multiplication for matrices of the same dimensions, but
sometimes it performs matrix multiplication when the matrices have compatible sizes (e.g., (1, d)
and (d, 1)).

• The operator ndarray.dot() performs matrix multiplication.
• Avoid loops as much as possible (no loops are required in the implementation of cost functions

and gradients !). Python is very slow in such cases...
• Sometimes you will pass a matrix as input, sometimes a vector (e.g., when selecting a single row of

examples), and the operators will behave differently depending on the case... Be sure to transform
your inputs at the beginning of all your functions to avoid bugs (e.g., y = y.reshape(-1,1); w
= w.reshape(-1,1); x = x.reshape(y.shape[0],w.shape[0])).

• Use np.sign and np.maximum.

Implementation of Cost Functions

Implement (without using any loops ! Each function should take 1-2 lines) :
• A function mse(w,x,y) that returns the mean squared error cost for a linear function paramete-

rized by w on the data x (size n, d) and the labels y. Your function should output the cost as a
matrix of size n, 1 (the cost for each example).

• A function reglog(w,x,y) that returns the logistic regression cost.
• The functions mse_grad(w,x,y) and reglog_grad(w,x,y) that return the gradients of the mean

squared error and logistic regression as matrices of size n, d.
You can test your functions with the function check_fonctions().

Bonus : Recall that the first-order Taylor expansion of a multivariate function is given by :

f(x) = f(x0) + (x− x0)∇f(x0) +O(∥x− x0∥2)

Using this expansion, write a function grad_check(f,f_grad,N=100) to test the accuracy of your
gradient functions. This function should randomly draw N points and verify the gradient computation
for these N points on average. Start with the 1-dimensional case, and if time permits, extend it to
d-dimensional cases.
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Gradient Descent

Implement a function descente_gradient(datax,datay,f_loss,f_grad,eps,iter) that performs
gradient descent to optimize the cost f_loss (whose gradient is given by f_grad) on the data datax
and labels datay, with a learning rate of eps and iter iterations. Your function should return the
optimal parameter w found, the list of w, and the cost function values over the iterations.

Experiments

In the file mltools.py, you will find a function gen_arti(nbex=1000,data_type=0,epsilon=0.02)
that generates datasets with nbex points of types : 2 Gaussians (data_type=0), 4 Gaussians (data_type=1),
and a checkerboard (data_type=2) with noise epsilon. Additional functions include :

• plot_data(data,labels) to visualize the data ;
• plot_frontiere(data,f,step) to plot the decision boundaries of function f for a 2D problem

by discretizing the space into step intervals ;
• make_grid(data,xmin,xmax,ymin,ymax,step) to construct a discretized grid of a 2D space

(with boundaries defined by the minimum and maximum values of data or the provided para-
meters).

Examples of usage are provided in the TME code skeleton.
Test your gradient descent implementation on the two-Gaussian problem. Compare the results between
linear regression and logistic regression. Visualize the decision boundaries and plot the cost evolution
over iterations. What happens when the learning rate is increased or decreased significantly ? Analyze
the behavior for a separable problem and for a non-separable problem (e.g., with significantly increased
noise).
Visualize the cost function in the weight space for the two dimensions of the problem (see the TME
code skeleton). Plot the trajectory followed by the optimization algorithm (the w values over iterations)
on the same graph.
Experiment with other types of artificial data.


