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1998 Amazon item-to-item recommendation

004-Now Special sessions in recommender system in several important conferences &

journals:
Al Communications ; IEEE Intelligent Systems; Inter i | Journal of El ic C e; Inter i | Journal
of Comp Sci and Applicati ACM Tr i on Comp -Human | ion; ACM Tr i on

Information Systems

2007 First ACM RecSys conference
2008 Netflix online services (& innovative HMI)
2008-09 Netflix RS prize

010-Now RS become essential : YouTube, Netflix, Tripadvisor, Last.fm, IMDD,
etc...

3/a9
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perspectives] S HATAER

Seller User

_ m Find some good items [precision issu
m Increase the number of items sold

m quickly
m Sell more diverse items m and/or in a huge catalog
m Increase the user satisfaction m Find all good items [recall issue]
Increase user fidelity m Lawyers Information Retrieval task
Vir’Fuous l‘_)OP: _ N m Being recommended a sequence / a
= improving the profiles & exploiting bundle
them _
m Just browsing

m Better understand what the user wants .
m Help others (forum profiles)

a/a9
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The value of recommendations Saa:‘vﬂﬁ'g#é

m Netflix: 2/3 of the movies watched are
recommended

m Google News: recommendations generate 38%
more clickthrough

m Amazon: 35% sales from recommendations

m Choicestream: 28% of the people would buy
more music if they found what they liked.
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The value of recommendations Saa:‘vﬂﬁ'g#é

m Netflix: 2/3 of the movies watched are
recommended

m Google News: recommendations generate 38%
more clickthrough

m Amazon: 35% sales from recommendations

m Choicestream: 28% of the people would buy
more music if they found what they liked.

Optimistic assumption:
small RMSE gain = bigger qualitative gain
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General position of Recommender Systems Sggmgggg

Ll m Information Access:
Access . . .
RS become inescapable when information sources grow
exponentially
m Behavior modeling:
RS m Business expertise
HMI Behavior m Crowd sourcing
Ergonomy modeling

m Ergonomy:
Very important... But not the topic today
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User Product
-—)‘ Recomender System ‘4— ‘ ~
Affinity
prediction
1 5

Rating prediction
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a00 g
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Rating prediction

First session: introduction to RecSys
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User Product

@@ Affinity DL
% @ predllctlon @9

l l

Ranked list of items

||
1 5 . g
Rating prediction Eﬂ‘-,j 1_‘_1:

Second session: new systems, new evaluation metrics
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Trends / ten:ial\aiﬁ/\/
Product
User
|n|||||||||||||||||||| |||||||

N

Recomender System ‘V

5% O pAfflty

v v

Ranked list of items Next item

|||
1 5 S N .
Rating prediction EVL‘LZ‘ “?__«_: ! ,:

Third session: temporal aspects
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How to build a Recommender System? General map SSORBONNE
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@

User e @ Product
@

Recomender System
Affinity D @I
@ prediction ?
Ranked list of items Next item
5 o N »
e 1 4

Ratingprediction M ~u .
bl Explainations

v

...
e
B

V

Forth session: deep learning for RecSys
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The Recommender problem Ssoaaonne
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Estimate a utility function that automatically predicts how a user will like an item.

Based on:
. Produc
m Past behavior User
m Relations to other users ~——————> Recomender System ‘4— ;
m ltem similarity v L‘l
Affinity
m Context prediction
m Time,
m Sequence,
m [tem description, h 5
m User categorization: Rating prediction

age, socio-professional category, ...

8/a9
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Different approaches S SGRBONNE
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Affinity prediction:

/\

Content based  Collaborative filtering

Nl T

Tabular  Textual Memory  Model

m Depending on available data

m Item descriptions

m User/item Interactions

Choosing an approach: m Depending on requirements

m Quick implementation
m Efficient inference
m Expected diversity : low/high

0/a9
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Content Based
Recommender Systems
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Mainly item centered

Understanding the product description to...
m Know which items are similar

[global description]
m Focus on common points between various items
[part of the description]

Paradigm of browsing:
you liked A, did you already consider B,C &D that are close?

11/49
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[CB] Static implementation & scaling up Ssoaaowe
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k-Nearest Neighbors graph

Learning step :
Feature engineering:
Item description = relevant vector /.

Product description update

Inference
m Presenting new informations within the product description

Issue: How to make the representation relevant?

12/49
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[CB] Nature of the description & associated metrics SUN,VERS,TE

m Tabular description :
m Hierarchy of domains (e.g. product categories in online shops)
m Descriptive features (often in a given domain)
(e.g. camera = definition, zoom, storage capacity, brand, ...)

= mostly an engineering job + domain expert knowledge
(understanding & weighting the features)
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[CB] Nature of the description & associated metrics Sggmgggg

m Tabular description :
m Hierarchy of domains (e.g. product categories in online shops)
m Descriptive features (often in a given domain)
(e.g. camera = definition, zoom, storage capacity, brand, ...)

= mostly an engineering job + domain expert knowledge
(understanding & weighting the features)

m Textual description : = Information Retrieval (IR)/NLP

m Matching raw texts:
preprocessing issues (stop words, basic language structure, ...)

m Keyword-based Vector Space Model (TF-IDF, etc...)
m Topic modeling: matching in the latent space

m Internal or external topic modeling

m Ontology / domain specific reference + mapping

= Choosing a metric adapted to the representation
cosine for raw texts, KL for topic distribution, ...

13/49
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[CB] User profiles Ssmom
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m Case 1 . explicit user profile

m Textual description of the user...
m Case 2: no user profile

m Query = stack of visited items

m Extracting items:
m User = query, Item = document... An IR task : p(u|7)
m Rocchio’s relevance feedback

Query = set of responses
first responses = query enrichments
last (or other documents) ~ negative query

14/49
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Pros & Cons Ssomm

UNIVERSITE

Explainable
Easy to implement
Scale up (& offline computations)

Can benefit from last advances to increase relevance

+ + + +

(Often) not personalized...
but intrinsically robust to new users !

H,

— Lack of an authority score (as in PageRank)
— Require an item description
— Not adapted to User Generated Contents (intrinsically)

= Mostly an NLP engineering game to obtain baselines that will be combined to
CF approaches...
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Well adapted to

m Browsing reasonable sized catalog with meaningful explanatory variable

= Suggest blender with same capacities & price category
= Work of art in a museum collection : suggest pieces from an artist, from a
period

m Textual dataset

m Google scholar suggestions
m Layer virtual assistant

Not adapted to

m Large catalog: lacks of authority score is penalizing.
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Collaborative filtering
Recommender Systems

From k-NN to
matrix factorization
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General idea S SRR
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Behavior modeling depending on users’ traces:

m User Generated Contents (Explicit) el -
m Ratings &
m Texts :
m Likes...
[ 1 User-item
m Inferred informations & | interactions
m you liked what you purchase 3 matrix
m you liked what you visit/rate s
m you don't like video you close less that 3
seconds after they started 3

Interaction data are valuable:

The best information filter is human...
Collaborative filtering = modeling humans from their traces

18/49
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History: frequent item set SS&F&%’S#E

Idea:

Extracting logical rules from (frequent) co-occurences

Frequent item set.
e.g. receipt mining in a supermarket : Milk, Beer, Diaper

A Extraction of the support. e.g. (Milk, Diaper) = Beer

N

+ Easy to understand
— Costly (combinatorial search)

— Not very robust to noise
A good explanation... but not an operational model

19/49
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Organization of collaboratives approaches

é E E oo E No Model

PY - users and items are represented directly by
-a their past interactions (large sparse vectors)
[ ] - recommendations are done following
a nearest neighbours information
a User-item
interactions
[ ] matrix
-_a
Model
coe
- new representations of users and items are build
(] based on a model (small dense vectors)
-_a

- recommendations are done following
the model information

@ Introduction to recommender systems, Baptiste Rocca
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cfl5ada
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Neighborhood based approaches Ssoaaowe

UNIVERSITE

In collaborative filtering...

User domain: if you behave as user u, then you might be
interested by u's choices

Item domain: item 7 is often associated to item 7’ in users’ traces;
if you visit 7, you might be interested by ¢’

Same approach than Content Based...
Based on another behavior sensor!

= In the item domain = very light inference ® /.
... But such RS is not personalized !

Item-to-item CF = The early Amazon approach \/
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Computing k-nearest neighbors in the user domain

sim(u.v)

Easy way to perform a
personalized recommendation...

LA} &) § bel-oX <

Credit: X. Amatrian
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sim(u,v)

Easy way to perform a
personalized recommendation...

O -k pe

NA

Credit: X. Amatrian
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Computing k-nearest neighbors in the user domain Sggmgggg

sim(u,v)
‘9 2 2 4 5 NA
Easy way to perform a [
personalized recommendation... ﬂ 5 4 1 0.87
ﬂ
~ ZUELI Ay Tyi i 5 2 1
D SR
veu Yuv Q 1 5 4 a
~
51%|381%| 4 |2.42+|2.48%| 2
@ - |357[38 8
) 4 | 5 1
(S9) NA

Credit: X. Amatrian
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Computing k-nearest neighbors in the user domain SSORBONNE
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m Bottleneck = Similarity computation + sort

Easy way to perform a m Complexity is O(n,n; + kny)
personalized recommendation... m Possible approximation (partitioning/hashing
space) : LSH
o 2 veu CuTvi m Possible implementation:
ur T
Zveb{ Quy m Isolate the neighborhood generation and

predication steps.
m “off-line component” / “model” — similarity
computation, done earlier & stored in memory.
m “on-line component” — prediction generation
process.

...But very expensive in the
inference step !
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Computing k-nearest neighbors in the user domain SSORBONNE

UNIVERSITE

m Bottleneck = Similarity computation + sort
Easy way to perform a

personalized recommendation... " Complexnlty ° O(mfni + i) o .
To be more efficient: m Possible approximation (partitioning/hashing
' space) : LSH

. . m Possible implementation:
user normalized computations

m Isolate the neighborhood generation and
predication steps.
ZUEM Quw (Toi — fhy) m “off-line component” / “model” — similarity
computation, done earlier & stored in memory.
Zveu Ay w . " . .
m “on-line component” — prediction generation
process.

Twi = foy +

@ C.Desrosiers & G. Karypis, RecSys 2011
A comprehensive survey of neighborhood-based recommendation methods
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Classical memory based alternative (1) : Slope one SSORBONNE
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15-1=05 ——

User A ]

User B ]

Ttem I

Ttem J

?7=2+(15-1)=25

A simple and efficient approach to
collaborative filtering:

m computing the average difference
between items

m every user u with a rating on i &
connected to u’ can give a
prediction on r/;
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2_0 Wall-E
John 4
2 . .
=0 Die Hard m Shortest path between items
Lucy
L Forrest Gump m Heaviest path = number of paths
: 3 .. .
Eric 5 m Random walk similarity
The Matrix
Diane 4 m Markov model
3 Titanic

-+ A new way to compute —offline— similarity between items
m Longer dependancies

— Expensive online path computation (< personalized reco)

— Usually gives the same results as matrix factorization

2a/49
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From memory to model: the missing value paradigm

Netflix Prize rating matrix
If you represent the Netflix Prize rating
data in a User/Movie matrix you get...
m 500,000 x 17,000 = 8,500 M
positions
m Out of which only 100M are not 0’s!

Data Set | users |items total density

Jester 48483 | 100 | 3519449 | 0,725
MovielLens | 6040 | 3952 | 1000209 | 0,041
EachMovie | 74424 | 1649 | 2811718 | 0,022

000000080000 00000

Q SCIENCES
b SORBONNE

UNIVERSITE

17.000 movies

X
X000000X

X000000000X.

500.000 users

000x X \

Very few non-zeros !
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Modeling:
p(my1 = klma,ms,...) °
i 2 2 4 5
Expectation-Maximization framework a
ﬂ 5 4 1
m A lot of parameters to model the ” 5 )
conditional distribution i
m Not adapted to large catalog + Q 1 5 4
sparse observations -
m Basic hypothesis: Missing I 4 2
Completely at Random (MCAR) -~ 4 | s ]
(=9
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Matrix factorization S SORBONNE
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Idea:

Compressing the representation of the matrix based on observed values is a strong
way to reconstruct missing values.

m Singular Value Decomposition (SVD)
m Non Negative Matrix Factorization (NMF)

m ... & many variations

Link with Minimum Description Length paradigm:
What is the smallest modeling that can explain observed ratings?
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Singular Value Decomposition

Framework of matrix factorization over non square matrix = SVD

Q SCIENCES
b SORBONNE

UNIVERSITE

r
}(concepts)

= turn into 0.

m r
(features) (concepts)
- — m
r (features)
—t— —
N
n A = n u | Xr A X \Y
(items) (items) N
m Not adapted to missing values...
m Weak reconstruction performance...
(& = SVD for recommender systems... Is not an SVD !

28/49
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R N [ [T

u€R?icR?

g User-item Reconstructed
— N . 7] interactions n| interactions
R = {(u’ (2 TU'L)} = matrix matrix

Estimator : 7,; = u, - i;

_ Z _ : 32 - p—
C o (T.uz Uy 12) niitems z
(u,i)eR

Focus on missing values + Mean Square Error (MSE)

U*, I* = argmin E (Tui — 0y - 15)?
Ul (ui)er
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SVD issues S SORBONNE
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Optimization: (stochastic) gradient descent

Vol =— Z 2u(ry; — wy - i), u<+u-—eVvyl
i|(i,0)ER

m Fast convergence ...
m ... but non convex formulation
m First optimizers based on multiplicative updates... No longer used.

Overfitting:
Even with z = 20: #param = 20 x (n, +n;) > |R|
= Regularization:

U*,I" = arg min Z (Tus — Wy - 1) 24N || U |5+ 0| T %
vl (u,i)ER

m Implementation : penalizing weights every A iterations
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Let’s go back to the basics... & the baselines

m General bias: b =7

1
m User bias: b, = ———— Tui
{ilrui # 0} Z

4T
Hyp: one user always gives the same rate

m ltem bias: b; = rm

Strong Hyp: one item is always evaluated with the same rate
We obtain three baselines... And an advanced formulation:

= u,,i; profiles encode the deviation wrt basic predictions
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NMF: the promise of understandable aspects SSORBONNE
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NMF: Non-negative Matrix Factorization = SVD + u>0+1i>0

U*,I* = arg min E (Tui — Wy - 1) 24N U |2+ 1]
U.I ’
(ui)ER

i 1 I Few dimensions available

m Regularization brings
rating to

No
contribution

m Issue = finding aspects
shared by many users

] contrib ++

= of—[o]ofo ]
-~<$»—-o»—-o|

Regularization => sparsity
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Expectations

What we expect:
m Efficient & reliable
suggestions
m Explanations
What we have:
m lterative (light) procedure
+ simple SGD
m Easy to enforce constraint:

m Orthogonality

m Specific initialization

m Modeling of negative
agreements

.

F
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I'he Color
Purple

Sense and

Sensibility
Geared ’

)
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.
Serious Braveheart
\madecus (21
PR

Lethal

Weapon
Dcean's 11 ﬁ Eactor 1Gea1
N tow:

towards
females

5

I'he Princess
Diaries

male

The Lion King

o~

»

o§ il)l::l\tl'[)(‘l'ldl'n( ¢ iu;

w Dumb a
Funny Dumber
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COld start S SORBONNE
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m Collaborative Filtering = exploiting traces...
= What can | do at the beginning?

W new users, new items

= Hybrid systems (content based + collaborative filtering)
start = item description + content based recommendations
= Forcing an initial feedback
m e.g. Netflix
= Using external source

m log in with Facebook, scanning user contacts, web history,...
m building an item profile (editorial work)

3a/49
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Evaluation:
evaluation metrics
VS
learning metrics
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Main issue : the weakness of MCAR hypothesis S sgpmoune

Data are not Missing Completely At Random...

Graphs from [Marlin & Zemel ‘09]:

‘Yahoo! Base Rating Distribution

Yahoo! Survey Rating Distribution 06

Even different in
product/movie domains:

Rating Probaility

Rating Probaility

m 60-80% of 4/5
ratings

2 3 - 5

2 3 4 5
Rating Value

Rating Value

Typical Data: users are free to choose which

Survey: ask users to rate a random list of
items to rate -> available data are MNAR :

items: approximates complete data
instead of giving low ratings, users
tend to not give a rating at all.
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Data are not Missing Completely At Random...
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Table 1: Simplistic Example for ratings missing not
at random (MNAR): test data where users rated
only what they liked or knew.

Predicting profile behavior on this kind
of data:

v
[0 4 steck, koD, 2010

Training and Testing of Recommender Systems on
Data Missing Not at Random

users
horror romance
fans lovers
h |5 5
m| o5 5
o|r 5 5
v . 5 5
i|r 5 5 5
e| o 5 5 5
s | m 5 5
5 5 5

Credit: H. Steck
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Main issue : the weakness of MCAR hypothesis Ssoaeowe
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Data are not Missing Completely At Random...

m Changing the error function

m Modelling missing values
Several outcomes: m Switching to a ranking criteria

m Changing the task
m predicting rated item (not the rate)

36/49



ction Eval 00®00000000

"\ SCIENCES
How to evaluate RS performance? SSORBONNE

UNIVERSITE

Warning

We should not confuse evaluation metrics & learning metrics

= MSE is a convenient learning metrics
(easily differentiable + convex ...)
... but it is a poor evaluation metrics
. cf Netflix Challenge feedbacks
It do not tell us if we provide relevant suggestions
m What are the other available metrics?
m Have a look towards the IR community

m Can we use those metrics during the learning step?
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Precision / Recall

@ Ground truth
b v H
Learning i8 t?(p ) i.42

set g0

Metrics ?

N N N
Fui12 > fuig > fuig2 > ...

m Precision : Among our k prediction, how many are in the ground truth?
m Recall : Among our k prediction, what is the GT coverage ?
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1/0 labeling, AUC metrics Saa:‘vﬂg‘;?.ﬁé

m Rendle popularize both 1/0 prediction & AUC metrics

m AUC = tradeoff between precision & recall
m Percentage of correct binary ranking for ONE user
m Aggregation over n, users

1 1 . .
AUCZTTMXU:W Z S(u-i>u-j)

(i,7)€E(u)

+ k not required
— top of the list = same impact as bottom of the list
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RS aim at proposing an ordered list of suggestion...
Which head is far more important than the rest.

For a user u with 4 liked items to discover:

i12 i1
query =u = RS] = '8 & 2 gr
242 8
i1 19
m Average precision (one query/user) :
K
1 1 1 2 3
I ;precision@K = Z<O + 3 + 3 + 1) =0.478

m Mean Average Precision =
Averaging over the whole population

40/49
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RS aim at proposing an ordered list of suggestion...
Which head is far more important than the rest.

For a user u with 4 liked items to discover:

11 11
) )
query =u = RSy, = 8 & 2 —qr
142 18
112 19

m Average precision :

4
1 3
> precision@K = L+ 1+1+7)=09375
k=1

| =

m Mean Average Precision =
Averaging over the whole population

40/49
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Mean Reciprocal Rank SUN.VERS.TE

At which rank is the first relevant item?

112 i1
query =u = RS = 8 & 2 =—agr
142 18
il i9
1 1 .
RR = = — on previous example
rank; 2

Mean Reciprocal Rank = Averaging over the whole population

= & How many iterations to obtain a relevant item?

a1/49
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We assume that we have a relevance score for each item...

i12 ind =1
i  ind =2
i42 ind=3
i1 ind =4

query =u = RS = = relevance

W w N O

l (2l
Z PelCUInd (11 1964 1.5+ 1.29 = 4.05
| logy(ind + log, (ind + 1)

DCG 4.05
DeG = - =0.69/0.6
DG = [eDCG ~ 34 189+ 11 0j00 — 09/00

Relative ideal (among suggestions) vs Absolute ideal (among all items)
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recallOk =

#relevant items in top k
#relevant items

Compute all recall@k...
until & match R(u)
Compute the area under the curve

m focus on rated items

m numerical indicator + graphical details normalized w.r.t. # items

@ H. Steck, KDD, 2010
Training and Testing of Recommender Systems on Data Missing Not at Random
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Comparison of Approaches:

— AllRank (RMSE = 1.106)

- - ignore missing ratings (RMSE = 0.921)

x integrated model [Koren ’08] (RMSE = 0.887)
of— (trained to minimize RMSE) 1

T--Q.2 0.4 0.6 o.s8 1

zoomed into top 2 %:

Large increase in Top-k Hit-Rate when

0.6

os accounting also for missing ratings
- when training on MNAR data.
= 0.4/
2oal

0.2

0.1

° o 0.005 O.l(()1 0.015 0.02
39 % . 50 % larger Top-k Hit-Rate: AllRank vs. integrated model

B H. Steck, KDD, 2010
Training and Testing of Recommender Systems on Data Missing Not at Random
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In a real situation

Designing an online Recommender System offers new performance indicators
m Online click, purchase, etc

A/B testing:

Defining some performance indicator with expert
Re-direct a small part of the customers to the new system B
m make sure that the redirection is random (not biased)

Compare indicators from A and B

= Best evaluation...
But only available online & with access to the backoffice
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Serendipity : another important factor to evaluate... SSORBONNE
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... But very difficult to quantify . .
_ L Idea to design a metric
m Exploration / exploitation dilemma

m Clustering / categorization Learn a strong baseline (SVD)

exploitation New system RS
m propose items from different Unexpectedness = RS\SVD
region

_ _ Serendipity =
m Post processing / HMI issue usefulness(Unexpectedness)

CF can offer serendipity CB is not well adapted

m increase neighborhood, . .
m Clustering heuristics

m increase implicit feedback weight m bad performance

v
@ M. Ge et al., RecSys, 2010

Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity
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Deep Learning
architectures
to improve
Recommender Systems
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U={u1,...,unu}
I={i,...,in,}
ueER*ieR?

R = {(uyi,74;)}

Estimator : 7,; = u, - i;

C= Z (Tui — Wy - )2

(u,i)ER
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SVD is a NN architecture Ssoaaonne
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U={uy,...,u,,}
I=A{iy,... iy}

<
\Q b .
‘§ Se ueR?*ieR?
< &
S
NV D X
. R={(u,i,ru;)}

Estimator : 7,; = u, - i;

C= Z (rui _uu'ii)2

(u,i)ER

Lookup tables
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MLP & RS: the simplest architecture Ssoaaowe
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<
N k]
Qﬁ Cg}‘ E.g. 2-layer perceptron
& O h = fi([u.di] - W)
MSE
Fui = f2(h - W2)
u Non linear
U MLP
Lookup tables
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Side information associated to (u,i):
text, time, image...

Y
N e
> Any criterion:
reconstruction,
N prediction ...
A\
| Enforce o
i JL similarity ,('7\0 ?
4 & SE
Q& (GRS
u &S MSE
U &L
ISES
L)
L&
SN
S K
&
Lookup tables
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A
( 6: fully connected #50 )
( 5: fully connected #100 )
I . .
(% max-pooling 1) m [Dieleman, 2014] : audio
I recommendation
( 3: convolution #32 <8 ) ) i . 3
I m predict item profile from audio
(2; max-pooling = 4) descriptors
I .
(1: convolution #32 8 m = better understanding
v

- [He, 2015] : online product reco.
i( feature pooling ) m Image descriptors

4 " i
m [Covington, 2016] : Youtube reco
m [Nedelec, 2017] : content2vec
awaudio || i m Text + image descriptors
® i raw audio |
(©)
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4096x 1 Fx1

)

Ite
Latent Factors Blases

[D|eleman 2014] : audio
—g“””e"'“”“ Eecommendatlon

Arch. by Krizhevsky et al.

Pretrained
DeepCNN |

Embeddin

“TFT

: Item Visual ~_ltem Use . . .
Visual Features  Factors ~ Factors Faciors m predict item profile from audio

descriptors
m = better understanding

m [He, 2015] : online product reco.
m Image descriptors
m [Covington, 2016] : Youtube reco
m [Nedelec, 2017] : content2vec
m Text + image descriptors
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approx. top N

nearest neighbor
index

class probabilities

training m [Dieleman, 2014] : audio

videolvectors v,

user vector u

serving

recommendation
m predict item profile from audio
[ ReLU ] descriptors
[_watchvector | searchvectol [ ]« m = better understanding

m [He, 2015] : online product reco.

example age m Image descriptors
gender
geographic m [Covington, 2016] : Youtube reco
embedding

m [Nedelec, 2017] : content2vec
m Text + image descriptors

bedded video watches embedded search tokens
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Deep = Easy handling of heterogeneous data gSC'ENCES

[ Image Vector HTenVe:mr ‘ | CF Vector

t
I T ] ‘ |\mage]\{ector HTenvemr \ﬂm’r/[Dleleman 2014] audlo
I |\ l : f

récommendation
Image Text CF Image Text CF . . . .
i o [ i beddi ing| - ing| | m predict item profile from audio
Module Module Module Module Module Module d escri ptO rs
m = better understanding
LY ~ 7 1 LY
/ \ m [He, 2015] : online product reco.

Title: “The Ar}f"af War’] Title: 7 Samurof”

Description: ,

m Image descriptors

[Covington, 2016] : Youtube reco

[Nedelec, 2017] : content2vec
d : 1 1
o B o movie m Text + image descriptors

Description:/.’..

Also bought wi C

Product A:
“The Art of War” - book

49/49



	Introduction
	Content Based  Recommender Systems
	


