SYSTÈMES DE RECOMMANDA-TION 52 (2023-2024)

•Cours 9 Nicolas Baskiotis nicolas.baskiotis@sorbonne-universite.fr Slides de Vincent Guigue Master 1 DAC • equipe MLIA, Instance Systèmes Intelligents et Robotique (ISIR)

Plan

Introduction

- Content Based Recommender Systems
- Collaborative filtering Recommender Systems
 - From k-NN to matrix factorization
- Evaluation: evaluation metrics
- vs learning metric
- Deep Learning architectures to improve
 - Recommender Systems

Recommender Systems in several dates

- 1998 Amazon item-to-item recommendation
- 004-Now Special sessions in recommender system in several important conferences & journals:
 - AI Communications ; IEEE Intelligent Systems; International Journal of Electronic Commerce; International Journal
 - of Computer Science and Applications; ACM Transactions on Computer-Human Interaction; ACM Transactions on
 - Information Systems
 - 2007 First ACM RecSys conference
 - 2008 Netflix online services (& innovative HMI)
- 2008-09 Netflix RS prize
- D10-Now RS become essential : YouTube, Netflix, Tripadvisor, Last.fm, IMDb, etc...

Why developing a Recommender Sysytem?

perspectives]

Seller

- Increase the number of items sold
- Sell more diverse items
- Increase the user satisfaction

Increase user fidelity

Virtuous loop:

 \Rightarrow improving the profiles & exploiting them

Better understand what the user wants

User

- Find some good items [precision issue
 - quickly
 - and/or in a huge catalog
- Find all good items [recall issue]
 - Lawyers Information Retrieval task
- Being recommended a sequence / a bundle
- Just browsing
- Help others (forum profiles)

The value of recommendations

- Netflix: 2/3 of the movies watched are recommended
- Google News: recommendations generate 38% more clickthrough
- Amazon: 35% sales from recommendations
- Choicestream: 28% of the people would buy more music if they found what they liked.

The value of recommendations

- Netflix: 2/3 of the movies watched are recommended
- Google News: recommendations generate 38% more clickthrough
- Amazon: 35% sales from recommendations
- Choicestream: 28% of the people would buy more music if they found what they liked.

Optimistic assumption:

small RMSE gain \Rightarrow bigger qualitative gain

General position of Recommender Systems

Information Access:

RS become inescapable when information sources grow exponentially

- Behavior modeling:
 - Business expertise
 - Crowd sourcing
- Ergonomy:

Very important... But not the topic today

Booooo

Eval 000000000

Deep advances 800

How to build a Recommender System? General map

B

Eval 000000000

Deep advances 2

SCIENCES

How to build a Recommender System? General map

B Sooooo

Eval 000000000

Deep advances 2

SCIENCES

How to build a Recommender System? General map

Second session: new systems, new evaluation metrics

Booooo

Eval 000000000

Deep advances 200

SCIENCES

How to build a Recommender System? General map

Third session: temporal aspects

Booooo

Eval 000000000

Deep advances 2

How to build a Recommender System? General map

SCIENCES SORBONNE

The Recommender problem

Estimate a *utility function* that automatically predicts how a user will like an item.

Based on:

- Past behavior
- Relations to other users
- Item similarity
- Context
 - Time,
 - Sequence,
 - Item description,
 - User categorization:

age, socio-professional category, ...

CB SOOOOO

Eval 000000000

Deep advances 0

Different approaches

Depending on available data

- Item descriptions
- User/item Interactions
- Depending on requirements
 - Quick implementation
 - Efficient inference
 - Expected diversity : low/high

Choosing an approach:

СВ

Plan

1 Introduction

2 Content Based Recommender Systems

Collaborative filtering Recommender Systems

From k-NN to matrix factorization

- Evaluation: evaluation metrics
- learning metrics
- Deep Learning architectures to improve
 - Recommender Systems

Contrent based approches (CB) Automation of editorial choices? Sorbonne

Mainly item centered

Understanding the product description to	
 Know which items are similar 	
	[global description]
Focus on common points between various items	[part of the description]

Paradigm of browsing: you liked A, did you already consider B,C &D that are close? СВ 00000

Eval 000000000

Deep advances 0

[CB] Static implementation & scaling up

Learning step :

- I Feature engineering: Item description ⇒ relevant vector
- k-Nearest Neighbors graph
- Product description update

Inference

- Presenting new informations within the product description
- Issue: How to make the representation relevant?

[CB] Nature of the description & associated metrics

- Hierarchy of domains (e.g. product categories in online shops)
- Descriptive features (often in a given domain)
 - (e.g. camera \Rightarrow definition, zoom, storage capacity, brand, ...)
- \Rightarrow mostly an engineering job + domain expert knowledge

(understanding & weighting the features)

[CB] Nature of the description & associated metrics

- Hierarchy of domains (e.g. product categories in online shops)
- Descriptive features (often in a given domain)
 - (e.g. camera \Rightarrow definition, zoom, storage capacity, brand, ...)
- \Rightarrow mostly an engineering job + domain expert knowledge

(understanding & weighting the features)

- **Textual description** : \Rightarrow Information Retrieval (IR)/NLP
 - Matching raw texts:

preprocessing issues (stop words, basic language structure, ...)

- Keyword-based Vector Space Model (TF-IDF, etc...)
- **Topic** modeling: matching in the latent space
 - Internal or external topic modeling
- Ontology / domain specific reference + mapping
- \Rightarrow Choosing a metric adapted to the representation

cosine for raw texts, KL for topic distribution, ...

[CB] User profiles

- Case 1 : explicit user profile
 - Textual description of the user...
- Case 2: no user profile
 - Query = stack of visited items
- Extracting items:
 - User = query, Item = document... An IR task : p(u|i)
 - Rocchio's relevance feedback
 - **1** Query \Rightarrow set of responses
 - 2 first responses = query enrichments
 - 3 last (or other documents) pprox negative query

Pros & Cons

SCIENCES SORBONNE UNIVERSITÉ

- + Explainable
- + Easy to implement
- + Scale up (& offline computations)
- + Can benefit from last advances to increase relevance
- $_\pm$ (Often) not personalized...
 - but intrinsically robust to new users !
- Lack of an authority score (as in PageRank)
- Require an item description
- Not adapted to User Generated Contents (intrinsically)

 \Rightarrow Mostly an NLP engineering game to obtain baselines that will be combined to CF approaches...

Main usage

Well adapted to

- Browsing reasonable sized catalog with meaningful explanatory variable
 - $\Rightarrow\,$ Suggest blender with same capacities & price category
 - \Rightarrow Work of art in a museum collection : suggest pieces from an artist, from a period

Textual dataset

- Google scholar suggestions
- Layer virtual assistant

Not adapted to

Large catalog: lacks of authority score is penalizing.

Plan

1 Introduction

- Content Based Recommender Systems
- Collaborative filtering Recommender Systems

From k-NN to matrix factorization

- Evaluation: evaluation metrics
- learning metrics
- Deep Learning architectures to improve
 - Recommender Systems

СВ 800000

CF

000000000000000

Eval 000000000

Deep advances O

General idea

••• 🖪 User Generated Contents (Explicit) Ratings • Texts Likes User-item Inferred informations interactions matrix you liked what you purchase you liked what you visit/rate ... ■ you don't like video you close less that 3 seconds after they started

Interaction data are valuable:

The best information filter is human...

Collaborative filtering = modeling humans from their traces

History: frequent item set

Idea:

Extracting logical rules from (frequent) co-occurences

1 Frequent item set.

```
e.g. receipt mining in a supermarket : Milk, Beer, Diaper
```

- **2** Extraction of the support. e.g. $(Milk, Diaper) \Rightarrow Beer$
- + Easy to understand
- Costly (combinatorial search)
- Not very robust to noise

A good explanation... but not an operational model

CF

Organization of collaboratives approaches

No Model

- users and items are represented directly by their past interactions (large sparse vectors)
- recommendations are done following nearest neighbours information

Model

- new representations of users and items are build based on a model (small dense vectors)
- recommendations are done following the model information

Introduction to recommender systems, Baptiste Rocca https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

Neighborhood based approaches

In collaborative filtering...

User domain: if you behave as user u, then you might be interested by u's choices Item domain: item i is often associated to item i' in users' traces; if you visit i, you might be interested by i'

Same approach than Content Based... Based on another behavior sensor!

⇒ In the item domain = very light inference
... But such RS is not personalized !

Item-to-item CF \Rightarrow The early Amazon approach

Eval 000000000

Deep advances 2

Computing k-nearest neighbors in the user domain

Easy way to perform a personalized recommendation...

2	HERLOCK	HOUSE	(Avendens		Breaking Bid	WALKING DEAD	sim(u,v)
2	2		2	4	5		NA
Ω	5		4			1	
2			5		2		
		1		5		4	
2			4			2	
2	4	5		1			NA

Credit: X. Amatrian

Eval 000000000

Computing k-nearest neighbors in the user domain

Easy way to perform a personalized recommendation...

Credit: X. Amatrian

Eval 0000000000

Deep advances 📿

Computing k-nearest neighbors in the user domain

Easy way to perform a personalized recommendation...

$$\hat{r_{ui}} = \frac{\sum_{v \in \mathcal{U}} \alpha_{uv} r_{vi}}{\sum_{v \in \mathcal{U}} \alpha_{uv}}$$

Credit: X. Amatrian

Eval 000000000

Computing k-nearest neighbors in the user domain

CF

Easy way to perform a personalized recommendation...

$$\hat{r_{ui}} = \frac{\sum_{v \in \mathcal{U}} \alpha_{uv} r_{vi}}{\sum_{v \in \mathcal{U}} \alpha_{uv}}$$

...But very **expensive** in the inference step !

- $\blacksquare Bottleneck = Similarity computation + sort$
- Complexity is $\mathcal{O}(n_u n_i + k n_u)$
 - Possible approximation (partitioning/hashing space) : LSH
- Possible implementation:
 - Isolate the neighborhood generation and predication steps.
 - "off-line component" / "model" similarity computation, done earlier & stored in memory.
 - "on-line component" prediction generation process.

Eval 0000000000

Computing k-nearest neighbors in the user domain

SCIENCES SORBONN UNIVERSIT

- Easy way to perform a personalized recommendation... To be more efficient:
- user normalized computations

$$\hat{r_{ui}} = \mu_u + \frac{\sum_{v \in \mathcal{U}} \alpha_{uv}(r_{vi} - \mu_v)}{\sum_{v \in \mathcal{U}} \alpha_{uv}}$$

- Bottleneck = Similarity computation + sort
- Complexity is $\mathcal{O}(n_u n_i + k n_u)$
 - Possible approximation (partitioning/hashing space) : LSH
- Possible implementation:
 - Isolate the neighborhood generation and predication steps.
 - "off-line component" / "model" similarity computation, done earlier & stored in memory.
 - "on-line component" prediction generation process.

C.Desrosiers & G. Karypis, RecSys 2011 A comprehensive survey of neighborhood-based recommendation methods

Eval 00000000

Classical memory based alternative (1) : Slope one

CF

A simple and efficient approach to collaborative filtering:

- computing the average difference between items
- every user u with a rating on i & connected to u' can give a prediction on r_{u'i}

 $Classical^{\circ}$ memorý[®] based alternative (2)... Bi-partite graph approach Sciences Survey interview $S_{\text{UNIVERSITE}}^{\text{Sciences}}$

- Shortest path between items
- Heaviest path = number of paths
- Random walk similarity
 - Markov model

- + A new way to compute –offline– similarity between items
 Longer dependancies
- Expensive online path computation (⇔ personalized reco)
- Usually gives the same results as matrix factorization

BOOOOO

Eval 000000000

Deep advances o

From memory to model: the missing value paradigm

CF

Netflix Prize rating matrix If you represent the Netflix Prize rating 17.000 movies data in a User/Movie matrix you get... ■ 500.000 x 17.000 = 8.500 M positions Out of which only 100M are not 0's! 500.000 users 000000 X 0000000000000 X 000000 total Data Set density users items 48483 100 3519449 0,725 Jester Very few non-zeros ! Moviel ens 6040 3952 1000209 0.041 EachMovie 74424 1649 2811718 0,022

Eval 000000000

Deep advances 2

Bayesian formulation : estimating missing values

CF

Modeling:

 $p(m_1 = k | m_2, m_3, \ldots)$

Expectation-Maximization framework

- A lot of parameters to model the conditional distribution
 - Not adapted to large catalog + sparse observations
- Basic hypothesis: Missing Completely at Random (MCAR)

	SHERLOCK	HOUSE	Avenuens		Breaking Bad	WALKING DEAD
3	2		2	4	5	
Ω	5		4			1
2			5		2	
		1		5		4
2			4			2
2	4	5		1		

CF

Matrix factorization

Idea:

Compressing the representation of the matrix based on observed values is a strong way to reconstruct missing values.

- Singular Value Decomposition (SVD)
- Non Negative Matrix Factorization (NMF)
- … & many variations

Link with *Minimum Description Length* paradigm:

What is the smallest modeling that can explain observed ratings?

Singular Value Decomposition

Framework of matrix factorization over non square matrix = SVD

CF

 \Rightarrow SVD for recommender systems... **Is not an SVD** !

Weak reconstruction performance...

• Not adapted to missing values... \Rightarrow turn into 0.

Booooo

SVD for recommender systems

CF

Focus on missing values + Mean Square Error (MSE)

$$U^*, I^* = \underset{U,I}{\operatorname{arg\,min}} \sum_{(u,i)\in R} (r_{ui} - \mathbf{u}_u \cdot \mathbf{i}_i)^2$$

1 Optimization: (stochastic) gradient descent

$$\nabla_{\mathbf{u}} \mathcal{C} = -\sum_{i|(i,u)\in R} 2\mathbf{u}(r_{ui} - \mathbf{u}_u \cdot \mathbf{i}_i), \qquad \mathbf{u} \leftarrow \mathbf{u} - \varepsilon \nabla_{\mathbf{u}} \mathcal{C}$$

- Fast convergence ...
- ... but non convex formulation
- First optimizers based on multiplicative updates... No longer used.

2 Overfitting:

Even with z = 20: $\#param = 20 \times (n_u + n_i) \ge |R|$ \Rightarrow Regularization:

$$U^{\star}, I^{\star} = \underset{U,I}{\operatorname{arg\,min}} \sum_{(u,i)\in R} (r_{ui} - \mathbf{u}_u \cdot \mathbf{i}_i)^2 + \lambda_u \|U\|_F^2 + \lambda \|I\|_F^2$$

 \blacksquare Implementation : penalizing weights every λ iterations

Eval 000000000

Deep advances 0

Introducing the bias: baselines + model improvements

Let's go back to the basics... & the baselines

• General bias: $b = \bar{r}$

• User bias:
$$b_u = \frac{1}{|\{i|r_{ui} \neq \emptyset\}|} \sum_{i|r_{ui} \neq \emptyset} r_{ui}$$

Hyp: one user always gives the same rate

• Item bias:
$$b_i = \frac{1}{|\{u|r_{ui} \neq \emptyset\}|} \sum_{u|r_{ui} \neq \emptyset} r_{ui}$$

Strong Hyp: one item is always evaluated with the same rate

We obtain three baselines... And an advanced formulation:

$$\hat{r}_{ui} = b + \frac{b_u}{b_i} + \mathbf{u}_u \cdot \mathbf{i}_i$$

 $\Rightarrow~ \mathbf{u}_u, \mathbf{i}_i$ profiles encode the deviation wrt basic predictions

NMF: the promise of understandable aspects

rating to

Eval 0000000000

Deep advances 0

Expectations

What we expect:

- Efficient & reliable suggestions
- Explanations

What we have:

- Iterative (light) procedure
 + simple SGD
- Easy to enforce constraint:
 - Orthogonality
 - Specific initialization
 - Modeling of negative agreements

■ Collaborative Filtering = exploiting traces...

 \Rightarrow What can I do at the beginning?

new users, new items

 \Rightarrow Hybrid systems (content based + collaborative filtering) start = item description + content based recommendations

- \Rightarrow Forcing an initial feedback
 - e.g. Netflix
- \Rightarrow Using external source
 - log in with Facebook, scanning user contacts, web history,...
 - building an item profile (editorial work)

Plan

1 Introduction

- Content Based Recommender Systems
- Collaborative filtering Recommender Systems

From k-NN to matrix factorization

- Evaluation: evaluation metrics vs
 - learning metrics

Deep Learning architectures to improve Recommender Syst

Eval 0000000000

Main issue : the weakness of MCAR hypothesis

Graphs from [Marlin & Zemel '09]:

Even different in product/movie domains:

 60-80% of 4/5 ratings

Survey: ask users to rate a <u>random</u> list of items: approximates complete data

Typical Data: users are <u>free to choose</u> which items to rate -> available data are MNAR : instead of giving low ratings, users tend to not give a rating at all.

SCIENCES SORBONNE UNIVERSITÉ

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Table 1: Simplistic Example for ratings missing not at random (MNAR): test data where users rated only what they liked or knew.

Predicting profile behavior on this kind of data:

H. Steck, KDD, 2010 Training and Testing of Recommender Systems on Data Missing Not at Random

			users						
		horror fans				romance lovers			
	h	5		5	5				
m	0	5	5						
0	r		5		5				
v		5		5	5				
i	r					5	5		5
е	0						5	5	5
s	m					5		5	
							5	5	5

Credit: H. Steck

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Several outcomes:

- Changing the error function
 - Modelling missing values
 - Switching to a ranking criteria
- Changing the task
 - predicting rated item (not the rate)

How to evaluate RS performance?

SCIENCES SORBONNE UNIVERSITÉ

Warning

We should not confuse evaluation metrics & learning metrics

 \Rightarrow MSE is a convenient learning metrics

(easily differentiable + convex ...) ... but it is a poor evaluation metrics ... cf Netflix Challenge feedbacks It do not tell us if we provide relevant suggestions

- What are the other available metrics?
 - Have a look towards the IR community
- Can we use those metrics during the learning step?

Eval 000000000

Deep advances 2

Precision / Recall

Precision : Among our k prediction, how many are in the ground truth?
Recall : Among our k prediction, what is the GT coverage ?

1/0 labeling, AUC metrics

- Rendle popularize both 1/0 prediction & AUC metrics
- AUC = tradeoff between precision & recall
 - Percentage of correct binary ranking for ONE user
 - Aggregation over n_u users

$$AUC = \frac{1}{n_u} \sum_{u} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\mathbf{u} \cdot \mathbf{i} > \mathbf{u} \cdot \mathbf{j})$$

- + k not required
- top of the list = same impact as bottom of the list

000 CF 800

_____E

Mean Average Precision (from the IR domain)

RS aim at proposing an ordered list of suggestion... Which **head is far more important** than the rest.

For a user u with 4 liked items to discover:

$$query = \mathbf{u} \Rightarrow RS_1 \Rightarrow \begin{bmatrix} i_{12} \\ i_8 \\ i_{42} \\ i_1 \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} i_1 \\ i_{42} \\ i_8 \\ i_9 \end{bmatrix} = GT$$

Average precision (one query/user) :

$$\frac{1}{K}\sum_{k=1}^{K} precision@K = \frac{1}{4}(0 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4}) = 0.478$$

Mean Average Precision =

Averaging over the whole population

00000 CF (

000000000000000

Mean Average Precision (from the IR domain)

RS aim at proposing an ordered list of suggestion... Which **head is far more important** than the rest.

For a user u with 4 liked items to discover:

$$query = \mathbf{u} \Rightarrow RS_2 \Rightarrow \begin{bmatrix} i_1 \\ i_8 \\ i_{42} \\ i_{12} \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} i_1 \\ i_{42} \\ i_8 \\ i_9 \end{bmatrix} = GT$$

Average precision :

$$\frac{1}{4}\sum_{k=1}^{4} precision@K = \frac{1}{4}(1+1+1+\frac{3}{4}) = 0.9375$$

Mean Average Precision =

Averaging over the whole population

BÖGGGGG

Eval 00000000000

Deep advances 0

Mean Reciprocal Rank

At which rank is the first relevant item?

$$query = \mathbf{u} \Rightarrow RS \Rightarrow \begin{bmatrix} \begin{vmatrix} i_{12} \\ i_8 \\ i_{42} \\ i_1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} i_1 \\ i_{42} \\ i_8 \\ i_9 \end{bmatrix} = GT$$
$$RR = \frac{1}{rank_i} = \frac{1}{2} \text{ on previous example}$$

Mean Reciprocal Rank =Averaging over the whole population $\Rightarrow \approx$ How many iterations to obtain a relevant item?

We assume that we have a relevance score for each item...

$$query = \mathbf{u} \Rightarrow RS \Rightarrow \begin{bmatrix} i_{12} & ind = 1\\ i_8 & ind = 2\\ i_{42} & ind = 3\\ i_1 & ind = 4 \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} 0\\ 2\\ 3\\ 3\\ \end{bmatrix} = relevance$$

$$DCG_{p} = \sum_{ind=1}^{p} \frac{relev_{ind}}{\log_{2}(ind+1)} = 0 + 1.26 + 1.5 + 1.29 = 4.05$$

nDCG =
$$\frac{DCG}{IdealDCG} = \frac{4.05}{3 + 1.89 + 1 + 0/0.86} = 0.69/0.6$$

Relative ideal (among suggestions) vs Absolute ideal (among all items)

H. Steck, KDD, 2010

Training and Testing of Recommender Systems on Data Missing Not at Random

Eval 000000000000

ATOP

Training and Testing of Recommender Systems on Data Missing Not at Random

A/B testing & production launch

In a real situation

Designing an online Recommender System offers new performance indicators

Online click, purchase, etc

A/B testing:

- Defining some performance indicator with expert
- **2** Re-direct a small part of the customers to the new system B
 - make sure that the redirection is random (not biased)
- **3** Compare indicators from A and B

 \Rightarrow Best evaluation...

But only available online & with access to the backoffice

B 000000

Eval 000000000

Serendipity : another important factor to evaluate...

... But very difficult to quantify

- Exploration / exploitation dilemma
- Clustering / categorization exploitation
 - propose items from different region
- Post processing / HMI issue
- CF can offer serendipity

....

- increase neighborhood,
- increase implicit feedback weight

Idea to design a metric

- **1** Learn a strong baseline (SVD)
- 2 New system RS
- 3 Unexpectedness = $RS \setminus SVD$
- 4 Serendipity = usefulness(Unexpectedness)

CB is not well adapted

- Clustering heuristics
- bad performance

M. Ge et al., RecSys, 2010 Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity

Plan

1 Introduction

- Content Based Recommender Systems
- Collaborative filtering Recommender Systems
 - From k-NN to matrix factorization
- Evaluation: evaluation metrics
 - learning metrics
- Deep Learning architectures to improve Recommender Systems

Eval 0000000000

Deep advances

SCIENCES SORBONNE UNIVERSITÉ

SVD is a NN architecture

$$U = \{\mathbf{u}_1, \dots, \mathbf{u}_{n_u}\}$$
$$I = \{\mathbf{i}_1, \dots, \mathbf{i}_{n_i}\}$$
$$\mathbf{u} \in \mathbb{R}^z, \mathbf{i} \in \mathbb{R}^z$$

$$R = \{(u, i, r_{ui})\}$$

Estimator : $\hat{r}_{ui} = \mathbf{u}_u \cdot \mathbf{i}_i$

$$\mathcal{C} = \sum_{(u,i)\in R} (r_{ui} - \mathbf{u}_u \cdot \mathbf{i}_i)^2$$

Eval 0000000000

Deep advances

SVD is a NN architecture

Lookup tables

$$U = \{\mathbf{u}_1, \dots, \mathbf{u}_{n_u}\}$$
$$I = \{\mathbf{i}_1, \dots, \mathbf{i}_{n_i}\}$$
$$\mathbf{u} \in \mathbb{R}^z, \mathbf{i} \in \mathbb{R}^z$$

 $R = \{(u, i, r_{ui})\}$ Estimator : $\hat{r}_{ui} = \mathbf{u}_u \cdot \mathbf{i}_i$

$$\mathcal{C} = \sum_{(u,i)\in R} (r_{ui} - \mathbf{u}_u \cdot \mathbf{i}_i)^2$$

ROCOCO

Eval 000000000

Deep advances oo

MLP & RS: the simplest architecture

E.g. 2-layer perceptron

 $\mathbf{h} = f_1([\mathbf{u}_u \mathbf{i}_i] \cdot W_1)$

 $\hat{r}_{ui} = f_2(\mathbf{h} \cdot W_2)$

Lookup tables

Eval 000000000

Deep = Easy handling of heterogeneous data

Side information associated to (u,i): text, time, image Any criterion: reconstruction, prediction ... Enforce Prediction similarity Ground Inuth Internediate L Policisentation MSE u U Lookup tables

SCIENCES

- [Dieleman, 2014] : audio recommendation
 - predict item profile from audio descriptors
 - \blacksquare \Rightarrow better understanding
- [He, 2015] : online product reco.
 - Image descriptors
- [Covington, 2016] : Youtube reco
- [Nedelec, 2017] : content2vec
 - Text + image descriptors

Eval 0000000000

Eval 000000000

SCIENCES

