
Introduction CB CF Eval Deep advances

SYSTÈMES DE RECOMMANDA-
TION
S2 (2023-2024)

Cours 9
Nicolas Baskiotis
nicolas.baskiotis@sorbonne-universite.fr

Slides de Vincent Guigue
Master 1 DAC

équipe MLIA, Institut des Systèmes Intelligents et Robotique (ISIR)
Sorbonne Université

1/49

Introduction CB CF Eval Deep advances

Plan

1 Introduction

2 Content Based
Recommender Systems

3 Collaborative �ltering
Recommender Systems

From k-NN to
matrix factorization

4 Evaluation:
evaluation metrics
vs
learning metrics

5 Deep Learning
architectures
to improve
Recommender Systems

2/49

Introduction CB CF Eval Deep advances

Recommender Systems in several dates

1998 Amazon item-to-item recommendation

2004-Now Special sessions in recommender system in several important conferences &
journals:
AI Communications ; IEEE Intelligent Systems; International Journal of Electronic Commerce; International Journal

of Computer Science and Applications; ACM Transactions on Computer-Human Interaction; ACM Transactions on

Information Systems

2007 First ACM RecSys conference

2008 Net�ix online services (& innovative HMI)

2008-09 Net�ix RS prize

2010-Now RS become essential : YouTube, Netflix, Tripadvisor, Last.fm, IMDb,
etc...

3/49

Introduction CB CF Eval Deep advancesWhy developing a Recommender Sysytem? [Seller's/User's

perspectives]

Seller User

Increase the number of items sold

Sell more diverse items

Increase the user satisfaction
Increase user �delity

Virtuous loop:
⇒ improving the pro�les & exploiting
them

Better understand what the user wants

Find some good items [precision issue]

quickly
and/or in a huge catalog

Find all good items [recall issue]

Lawyers Information Retrieval tasks

Being recommended a sequence / a
bundle

Just browsing

Help others (forum pro�les)

4/49

Introduction CB CF Eval Deep advances

The value of recommendations

Net�ix: 2/3 of the movies watched are
recommended

Google News: recommendations generate 38%
more clickthrough

Amazon: 35% sales from recommendations

Choicestream: 28% of the people would buy
more music if they found what they liked.

5/49

Introduction CB CF Eval Deep advances

The value of recommendations

Net�ix: 2/3 of the movies watched are
recommended

Google News: recommendations generate 38%
more clickthrough

Amazon: 35% sales from recommendations

Choicestream: 28% of the people would buy
more music if they found what they liked.

Optimistic assumption:
small RMSE gain ⇒ bigger qualitative gain

5/49

Introduction CB CF Eval Deep advances

General position of Recommender Systems

Behavior
 modeling

Information
Access

HMI
Ergonomy

RS

Information Access:
RS become inescapable when information sources grow

exponentially

Behavior modeling:

Business expertise
Crowd sourcing

Ergonomy:
Very important... But not the topic today

6/49

Introduction CB CF Eval Deep advances

How to build a Recommender System? General map

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

7/49

Introduction CB CF Eval Deep advances

How to build a Recommender System? General map

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

First session: introduction to RecSys

7/49

Introduction CB CF Eval Deep advances

How to build a Recommender System? General map

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

Ranked list of items

Second session: new systems, new evaluation metrics

7/49

Introduction CB CF Eval Deep advances

How to build a Recommender System? General map

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

Ranked list of items

Trends / temporal aspects

Next item

Third session: temporal aspects

7/49

Introduction CB CF Eval Deep advances

How to build a Recommender System? General map

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

Ranked list of items Next item

Explainations

Forth session: deep learning for RecSys

7/49

Introduction CB CF Eval Deep advances

The Recommender problem

Estimate a utility function that automatically predicts how a user will like an item.

Based on:

Past behavior

Relations to other users

Item similarity

Context

Time,
Sequence,
Item description,
User categorization:

age, socio-professional category, ...

User Product

Recomender System

Affinity
prediction

1 5
Rating prediction

8/49

Introduction CB CF Eval Deep advances

Di�erent approaches

A�nity prediction:

Content based

Tabular Textual

Collaborative �ltering

Memory Model

Choosing an approach:

Depending on available data

Item descriptions
User/item Interactions

Depending on requirements

Quick implementation
E�cient inference
Expected diversity : low/high

9/49

Introduction CB CF Eval Deep advances

Plan

1 Introduction

2 Content Based
Recommender Systems

3 Collaborative �ltering
Recommender Systems

From k-NN to
matrix factorization

4 Evaluation:
evaluation metrics
vs
learning metrics

5 Deep Learning
architectures
to improve
Recommender Systems

10/49

Introduction CB CF Eval Deep advancesContent based approches (CB): Automation of editorial choices?

Mainly item centered

Understanding the product description to...

Know which items are similar
[global description]

Focus on common points between various items
[part of the description]

Paradigm of browsing:
you liked A, did you already consider B,C &D that are close?

11/49

Introduction CB CF Eval Deep advances

[CB] Static implementation & scaling up

Learning step :

1 Feature engineering:
Item description ⇒ relevant vector

2 k-Nearest Neighbors graph

3 Product description update

Inference

Presenting new informations within the product description

Issue: How to make the representation relevant?

12/49

Introduction CB CF Eval Deep advances

[CB] Nature of the description & associated metrics

Tabular description :

Hierarchy of domains (e.g. product categories in online shops)
Descriptive features (often in a given domain)

(e.g. camera ⇒ de�nition, zoom, storage capacity, brand, ...)

⇒ mostly an engineering job + domain expert knowledge
(understanding & weighting the features)

Textual description : ⇒ Information Retrieval (IR)/NLP

Matching raw texts:
preprocessing issues (stop words, basic language structure, ...)

Keyword-based Vector Space Model (TF-IDF, etc...)
Topic modeling: matching in the latent space

Internal or external topic modeling

Ontology / domain speci�c reference + mapping

⇒ Choosing a metric adapted to the representation
cosine for raw texts, KL for topic distribution, ...

13/49

Introduction CB CF Eval Deep advances

[CB] Nature of the description & associated metrics

Tabular description :

Hierarchy of domains (e.g. product categories in online shops)
Descriptive features (often in a given domain)

(e.g. camera ⇒ de�nition, zoom, storage capacity, brand, ...)

⇒ mostly an engineering job + domain expert knowledge
(understanding & weighting the features)

Textual description : ⇒ Information Retrieval (IR)/NLP

Matching raw texts:
preprocessing issues (stop words, basic language structure, ...)

Keyword-based Vector Space Model (TF-IDF, etc...)
Topic modeling: matching in the latent space

Internal or external topic modeling

Ontology / domain speci�c reference + mapping

⇒ Choosing a metric adapted to the representation
cosine for raw texts, KL for topic distribution, ...

13/49

Introduction CB CF Eval Deep advances

[CB] User pro�les

Case 1 : explicit user pro�le

Textual description of the user...

Case 2: no user pro�le

Query = stack of visited items

Extracting items:

User = query, Item = document... An IR task : p(u|i)
Rocchio's relevance feedback

1 Query ⇒ set of responses
2 �rst responses = query enrichments
3 last (or other documents) ≈ negative query

14/49

Introduction CB CF Eval Deep advances

Pros & Cons

+ Explainable

+ Easy to implement

+ Scale up (& o�ine computations)

+ Can bene�t from last advances to increase relevance

± (Often) not personalized...
but intrinsically robust to new users !

− Lack of an authority score (as in PageRank)

− Require an item description

− Not adapted to User Generated Contents (intrinsically)

⇒ Mostly an NLP engineering game to obtain baselines that will be combined to
CF approaches...

15/49

Introduction CB CF Eval Deep advances

Main usage

Well adapted to

Browsing reasonable sized catalog with meaningful explanatory variable

⇒ Suggest blender with same capacities & price category
⇒ Work of art in a museum collection : suggest pieces from an artist, from a

period

Textual dataset

Google scholar suggestions
Layer virtual assistant

Not adapted to

Large catalog: lacks of authority score is penalizing.

16/49

Introduction CB CF Eval Deep advances

Plan

1 Introduction

2 Content Based
Recommender Systems

3 Collaborative �ltering
Recommender Systems

From k-NN to
matrix factorization

4 Evaluation:
evaluation metrics
vs
learning metrics

5 Deep Learning
architectures
to improve
Recommender Systems

17/49

Introduction CB CF Eval Deep advances

General idea

Behavior modeling depending on users' traces:

User Generated Contents (Explicit)

Ratings
Texts
Likes...

Inferred informations

you liked what you purchase
you liked what you visit/rate
you don't like video you close less that 3
seconds after they started

Interaction data are valuable:

The best information �lter is human...
Collaborative �ltering = modeling humans from their traces

18/49

Introduction CB CF Eval Deep advances

History: frequent item set

Idea:

Extracting logical rules from (frequent) co-occurences

1 Frequent item set.
e.g. receipt mining in a supermarket : Milk,Beer,Diaper

2 Extraction of the support. e.g. (Milk,Diaper)⇒ Beer

+ Easy to understand

− Costly (combinatorial search)

− Not very robust to noise
A good explanation... but not an operational model

19/49

Introduction CB CF Eval Deep advances

Organization of collaboratives approaches

Introduction to recommender systems, Baptiste Rocca
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

20/49

Introduction CB CF Eval Deep advances

Neighborhood based approaches

In collaborative �ltering...

User domain: if you behave as user u, then you might be
interested by u's choices

Item domain: item i is often associated to item i′ in users' traces;
if you visit i, you might be interested by i′

Same approach than Content Based...
Based on another behavior sensor!

⇒ In the item domain = very light inference
... But such RS is not personalized !

Item-to-item CF ⇒ The early Amazon approach

21/49

Introduction CB CF Eval Deep advances

Computing k-nearest neighbors in the user domain

Easy way to perform a
personalized recommendation...

Xavier Amatriain – July 2014 – Recommender Systems

User-based CF
Example

Credit: X. Amatrian

22/49

Introduction CB CF Eval Deep advances

Computing k-nearest neighbors in the user domain

Easy way to perform a
personalized recommendation...

Xavier Amatriain – July 2014 – Recommender Systems

User-based CF
Example

Credit: X. Amatrian

22/49

Introduction CB CF Eval Deep advances

Computing k-nearest neighbors in the user domain

Easy way to perform a
personalized recommendation...

r̂ui =

∑
v∈U αuvrvi∑
v∈U αuv

Xavier Amatriain – July 2014 – Recommender Systems

User-based CF
Example

Credit: X. Amatrian

22/49

Introduction CB CF Eval Deep advances

Computing k-nearest neighbors in the user domain

Easy way to perform a
personalized recommendation...

r̂ui =

∑
v∈U αuvrvi∑
v∈U αuv

...But very expensive in the
inference step !

Bottleneck = Similarity computation + sort

Complexity is O(nuni + knu)

Possible approximation (partitioning/hashing
space) : LSH

Possible implementation:

Isolate the neighborhood generation and
predication steps.
�o�-line component� / �model� � similarity
computation, done earlier & stored in memory.
�on-line component� � prediction generation
process.

22/49

Introduction CB CF Eval Deep advances

Computing k-nearest neighbors in the user domain

Easy way to perform a
personalized recommendation...
To be more e�cient:

user normalized computations

r̂ui = µu +

∑
v∈U αuv(rvi − µv)∑

v∈U αuv

Bottleneck = Similarity computation + sort

Complexity is O(nuni + knu)

Possible approximation (partitioning/hashing
space) : LSH

Possible implementation:

Isolate the neighborhood generation and
predication steps.
�o�-line component� / �model� � similarity
computation, done earlier & stored in memory.
�on-line component� � prediction generation
process.

C.Desrosiers & G. Karypis, RecSys 2011
A comprehensive survey of neighborhood-based recommendation methods

22/49

Introduction CB CF Eval Deep advances

Classical memory based alternative (1) : Slope one
Slope One Predictors for Online Rating-Based Collaborative Filtering

Daniel Lemire⇤ Anna Maclachlan†

Abstract
Rating-based collaborative filtering is the process of predict-
ing how a user would rate a given item from other user
ratings. We propose three related slope one schemes with
predictors of the form f (x) = x + b, which precompute the
average difference between the ratings of one item and an-
other for users who rated both. Slope one algorithms are
easy to implement, efficient to query, reasonably accurate,
and they support both online queries and dynamic updates,
which makes them good candidates for real-world systems.
The basic SLOPE ONE scheme is suggested as a new ref-
erence scheme for collaborative filtering. By factoring in
items that a user liked separately from items that a user dis-
liked, we achieve results competitive with slower memory-
based schemes over the standard benchmark EachMovie and
Movielens data sets while better fulfilling the desiderata of
CF applications.

Keywords: Collaborative Filtering, Recommender, e-
Commerce, Data Mining, Knowledge Discovery

1 Introduction
An online rating-based Collaborative Filtering CF query
consists of an array of (item, rating) pairs from a single user.
The response to that query is an array of predicted (item,
rating) pairs for those items the user has not yet rated. We
aim to provide robust CF schemes that are:

1. easy to implement and maintain: all aggregated data
should be easily interpreted by the average engineer and
algorithms should be easy to implement and test;

2. updateable on the fly: the addition of a new rating
should change all predictions instantaneously;

3. efficient at query time: queries should be fast, possibly
at the expense of storage;

4. expect little from first visitors: a user with few ratings
should receive valid recommendations;

5. accurate within reason: the schemes should be compet-
itive with the most accurate schemes, but a minor gain

⇤Université du Québec à Montréal
†Idilia Inc.
In SIAM Data Mining (SDM’05), Newport Beach, California, April

21-23, 2005.

2 ? User B

Item J
? = 2 + (1.5 − 1) = 2.5

1 1.5

Item I

User A

1.5 − 1 = 0.5

Figure 1: Basis of SLOPE ONE schemes: User A’s ratings
of two items and User B’s rating of a common item is used
to predict User B’s unknown rating.

in accuracy is not always worth a major sacrifice in sim-
plicity or scalability.

Our goal in this paper is not to compare the accuracy
of a wide range of CF algorithms but rather to demonstrate
that the Slope One schemes simultaneously fulfill all five
goals. In spite of the fact that our schemes are simple,
updateable, computationally efficient, and scalable, they are
comparable in accuracy to schemes that forego some of the
other advantages.

Our Slope One algorithms work on the intuitive prin-
ciple of a “popularity differential” between items for users.
In a pairwise fashion, we determine how much better one
item is liked than another. One way to measure this differen-
tial is simply to subtract the average rating of the two items.
In turn, this difference can be used to predict another user’s
rating of one of those items, given their rating of the other.
Consider two users A and B, two items I and J and Fig. 1.
User A gave item I a rating of 1, whereas user B gave it a
rating of 2, while user A gave item J a rating of 1.5. We ob-
serve that item J is rated more than item I by 1.5� 1 = 0.5
points, thus we could predict that user B will give item J a
rating of 2+0.5 = 2.5. We call user B the predictee user and
item J the predictee item. Many such differentials exist in a
training set for each unknown rating and we take an average
of these differentials. The family of slope one schemes pre-
sented here arise from the three ways we select the relevant
differentials to arrive at a single prediction.

The main contribution of this paper is to present slope
one CF predictors and demonstrate that they are competitive

ar
X

iv
:c

s/
07

02
14

4v
2

 [c
s.D

B
]

15
 S

ep
 2

00
8

A simple and e�cient approach to
collaborative �ltering:

computing the average di�erence
between items

every user u with a rating on i &
connected to u′ can give a
prediction on ru′i

23/49

Introduction CB CF Eval Deep advancesClassical memory based alternative (2) : Bi-partite graph approach

4 A Comprehensive Survey of Neighborhood-based Recommendation Methods 135

4.4.2 Graph-based Methods

In graph-based approaches, the data is represented in the form of a graph where
nodes are users, items or both, and edges encode the interactions or similarities
between the users and items. For example, in Figure 4.4, the data is modeled as a
bipartite graph where the two sets of nodes represent users and items, and an edge
connects user u to item i if there is a rating given to i by u in the system. A weight
can also be given to this edge, such as the value of its corresponding rating. In
another model, the nodes can represent either users or items, and an edge connects
two nodes if the ratings corresponding two these nodes are sufficiently correlated.
The weight of this edge can be the corresponding correlation value.

Fig. 4.4: A bipartite graph representation of the ratings of Figure 4.1 (only ratings
with value in {2,3,4} are shown).

In these models, standard approaches based on correlation predict the rating of a
user u for an item i using only the nodes directly connected to u or i. Graph-based
approaches, on the other hand, allow nodes that are not directly connected to in-
fluence each other by propagating information along the edges of the graph. The
greater the weight of an edge, the more information is allowed to pass through it.
Also, the influence of a node on another should be smaller if the two nodes are fur-
ther away in the graph. These two properties, known as propagation and attenuation
[26, 34], are often observed in graph-based similarity measures.

The transitive associations captured by graph-based methods can be used to rec-
ommend items in two different ways. In the first approach, the proximity of a user u
to an item i in the graph is used directly to evaluate the rating of u for i [19, 26, 34].
Following this idea, the items recommended to u by the system are those that are
the “closest” to u in the graph. On the other hand, the second approach considers the
proximity of two users or item nodes in the graph as a measure of similarity, and uses
this similarity as the weights wuv or wi j of a neighborhood-based recommendation
method [19, 48].

Shortest path between items

Heaviest path = number of paths

Random walk similarity

Markov model

+ A new way to compute �o�ine� similarity between items

Longer dependancies

− Expensive online path computation (⇔ personalized reco)

− Usually gives the same results as matrix factorization

24/49

Introduction CB CF Eval Deep advances

From memory to model: the missing value paradigm

Net�ix Prize rating matrix

If you represent the Net�ix Prize rating
data in a User/Movie matrix you get...

500,000 x 17,000 = 8,500 M
positions

Out of which only 100M are not 0's!

Xavier Amatriain – July 2014 – Recommender Systems

Personalised vs Non-Personalised CF

0,1510,2230,0222811718164974424EachMovie

0,1790,2330,041100020939526040MovieLens

0,1520,2200,725351944910048483Jester

MAE

Pers

MAE
Non
Pers

densitytotal
ratingsitemsusersData Set

Not much difference indeed!

vij is the rating of user i for product
j and vj is the average rating for
product j

Xavier Amatriain – July 2014 – Recommender Systems

The Sparsity Problem

● If you represent the Netflix Prize rating data in a
User/Movie matrix you get...
○ 500,000 x 17,000 = 8,500 M positions
○ Out of which only 100M are not 0's!

● Methods of dimensionality reduction
○ Matrix Factorization
○ Clustering
○ Projection (PCA ...)

25/49

Introduction CB CF Eval Deep advances

Bayesian formulation : estimating missing values

Modeling:

p(m1 = k|m2,m3, . . .)

Expectation-Maximization framework

A lot of parameters to model the
conditional distribution

Not adapted to large catalog +
sparse observations

Basic hypothesis: Missing
Completely at Random (MCAR)

Xavier Amatriain – July 2014 – Recommender Systems

User-based CF
Example

26/49

Introduction CB CF Eval Deep advances

Matrix factorization

Idea:

Compressing the representation of the matrix based on observed values is a strong
way to reconstruct missing values.

Singular Value Decomposition (SVD)

Non Negative Matrix Factorization (NMF)

... & many variations

Link with Minimum Description Length paradigm:

What is the smallest modeling that can explain observed ratings?

27/49

Introduction CB CF Eval Deep advances

Singular Value Decomposition

Framework of matrix factorization over non square matrix = SVD

46 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

space, it can be used as the basis of latent-semantic analysis[24], a very popular
technique for text classification in Information Retrieval .

The core of the SVD algorithm lies in the following theorem: It is always possi-
ble to decompose a given matrix A into A = UλV T . Given the n × m matrix data A
(n items, m features), we can obtain an n× r matrix U (n items, r concepts), an r × r
diagonal matrix λ (strength of each concept), and an m × r matrix V (m features, r
concepts). Figure 2.3 illustrates this idea. The λ diagonal matrix contains the sin-
gular values, which will always be positive and sorted in decreasing order. The U
matrix is interpreted as the “item-to-concept” similarity matrix, while the V matrix
is the “term-to-concept” similarity matrix.

An

m

= U

r

(items)

(features) (concepts)

X

r

r X V

m

n
(items)

(features)

r
(concepts)

λ

Fig. 2.3: Illustrating the basic Singular Value Decomposition Theorem: an item ×
features matrix can be decomposed into three different ones: an item × concepts, a
concept strength, and a concept × features.

In order to compute the SVD of a rectangular matrix A, we consider AAT and
AT A. The columns of U are the eigenvectors of AAT , and the columns of V are
the eigenvectors of AT A. The singular values on the diagonal of λ are the positive
square roots of the nonzero eigenvalues of both AAT and AT A. Therefore, in order
to compute the SVD of matrix A we first compute T as AAT and D as AT A and then
compute the eigenvectors and eigenvalues for T and D.

The r eigenvalues in λ are ordered in decreasing magnitude. Therefore, the orig-
inal matrix A can be approximated by simply truncating the eigenvalues at a given k.
The truncated SVD creates a rank-k approximation to A so that Ak = UkλkV T

k . Ak is
the closest rank-k matrix to A. The term “closest” means that Ak minimizes the sum
of the squares of the differences of the elements of A and Ak. The truncated SVD is
a representation of the underlying latent structure in a reduced k-dimensional space,
which generally means that the noise in the features is reduced.

The use of SVD as tool to improve collaborative filtering has been known for
some time. Sarwar et al. [66] describe two different ways to use SVD in this context.
First, SVD can be used to uncover latent relations between customers and products.
In order to accomplish this goal, they first fill the zeros in the user-item matrix
with the item average rating and then normalize by subtracting the user average.
This matrix is then factored using SVD and the resulting decomposition can be
used – after some trivial operations – directly to compute the predictions. The other

Not adapted to missing values... ⇒ turn into 0.

Weak reconstruction performance...

⇒ SVD for recommender systems... Is not an SVD !

28/49

Introduction CB CF Eval Deep advances

SVD for recommender systems

U = {u1, . . . ,unu
}, I = {i1, . . . , ini

}

u ∈ Rz, i ∈ Rz

R = {(u, i, rui)}
Estimator : r̂ui = uu · ii

C =
∑

(u,i)∈R

(rui − uu · ii)2

Focus on missing values + Mean Square Error (MSE)

U⋆, I⋆ = argmin
U,I

∑

(u,i)∈R

(rui − uu · ii)2

29/49

Introduction CB CF Eval Deep advances

SVD issues

1 Optimization: (stochastic) gradient descent

∇uC = −
∑

i|(i,u)∈R

2u(rui − uu · ii), u← u− ε∇uC

Fast convergence ...
... but non convex formulation
First optimizers based on multiplicative updates... No longer used.

2 Over�tting:
Even with z = 20: #param = 20× (nu + ni) ≥ |R|
⇒ Regularization:

U⋆, I⋆ = argmin
U,I

∑

(u,i)∈R

(rui − uu · ii)2+λu∥U∥2F+λ∥I∥2F

Implementation : penalizing weights every λ iterations

30/49

Introduction CB CF Eval Deep advances

Introducing the bias: baselines + model improvements

Let's go back to the basics... & the baselines

General bias: b = r̄

User bias: bu =
1

|{i|rui ̸= ∅}|
∑

i|rui ̸=∅
rui

Hyp: one user always gives the same rate

Item bias: bi =
1

|{u|rui ̸= ∅}|
∑

u|rui ̸=∅
rui

Strong Hyp: one item is always evaluated with the same rate

We obtain three baselines... And an advanced formulation:

r̂ui = b+ bu + bi + uu · ii

⇒ uu, ii pro�les encode the deviation wrt basic predictions

31/49

Introduction CB CF Eval Deep advances

NMF: the promise of understandable aspects

NMF: Non-negative Matrix Factorization = SVD + u ≥ 0 + i ≥ 0

U⋆, I⋆ = argmin
U,I

∑

(u,i)∈R

(rui − uu · ii)2+λu∥U∥2F+λ∥I∥2F

U

u

Rating matrix

Ii

0
0
0
1

...

0

0
1
0
1
0

...

No
contribution
contrib ++

Regularization => sparsity

Few dimensions available

Regularization brings
rating to 0

Issue = �nding aspects
shared by many users

32/49

Introduction CB CF Eval Deep advances

Expectations

What we expect:

E�cient & reliable
suggestions

Explanations

What we have:

Iterative (light) procedure
+ simple SGD

Easy to enforce constraint:

Orthogonality
Speci�c initialization
Modeling of negative
agreements
...

33/49

Introduction CB CF Eval Deep advances

Cold start

Collaborative Filtering = exploiting traces...
⇒ What can I do at the beginning?

new users, new items

⇒ Hybrid systems (content based + collaborative �ltering)

start = item description + content based recommendations

⇒ Forcing an initial feedback

e.g. Net�ix

⇒ Using external source

log in with Facebook, scanning user contacts, web history,...
building an item pro�le (editorial work)

34/49

Introduction CB CF Eval Deep advances

Plan

1 Introduction

2 Content Based
Recommender Systems

3 Collaborative �ltering
Recommender Systems

From k-NN to
matrix factorization

4 Evaluation:
evaluation metrics
vs
learning metrics

5 Deep Learning
architectures
to improve
Recommender Systems

35/49

Introduction CB CF Eval Deep advances

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Copyright © 2010 Alcatel-Lucent. All rights reserved.7 | Recommender Systems | July 2010

Ratings are missing not at random (MNAR): Empirical Evidence

Graphs from [Marlin & Zemel ‘09]:

Survey: ask users to rate a random list of
items: approximates complete data

Typical Data: users are free to choose which
items to rate -> available data are MNAR :

instead of giving low ratings, users
tend to not give a rating at all.

Even di�erent in
product/movie domains:

60-80% of 4/5
ratings

36/49

Introduction CB CF Eval Deep advances

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Predicting pro�le behavior on this kind
of data:

H. Steck, KDD, 2010
Training and Testing of Recommender Systems on
Data Missing Not at Random

Table 1: Simplistic Example for ratings missing not
at random (MNAR): test data where users rated
only what they liked or knew.

users
horror romance
fans lovers

h 5 5 5
m o 5 5
o r 5 5
v . 5 5 5
i r 5 5 5
e o 5 5 5
s m 5 5

. 5 5 5

tion of ratings in the Yahoo!LaunchCast data show that low
ratings are much more likely to be missing from the observed
data than high ratings (see Fig. 2 in [11]). This may be a
consequence of the fact that users are free to choose which
items to rate. This kind of data is inexpensive to collect, and
typically used for training and testing recommender systems
(prior to conducting more costly field studies).

The effect of ratings missing not at random (MNAR) is
illustrated by the following simplistic example, see Table 1:
assume that the items comprise horror and romance movies;
the romance-lovers assign the highest rating of 5 stars to
romance movies and choose not to rate any of the horror
movies, while the horror-fans do the opposite. The missing
data mechanism is to rate only movies the users like or know.
Let us further assume a (useless) recommender system that
predicts a 5-star rating for all movies and users. When se-
lecting a movie with the highest predicted rating (ties are
broken at random), a horror or romance movie is recom-
mended with equal probability to each user. While this is
obviously a useless recommender system, it achieves perfect
results on the observed ratings in our test data in Table 1–for
any performance measure, including RMSE, mean absolute
error (MAE), nDCG, expected reciprocal rank (ERR), mean
average precision (MAP), etc. The reason is that the test
data are missing not at random (MNAR), as they do not
contain any test cases for the combinations (horror movie,
romance lover) and (romance movie, horror fan). The solu-
tion is to consider, for each user, the predictions / rankings
of all items–whether their ratings are observed or missing.
This is the scenario of a real-world recommender system,
which has to pick a few items from among all available ones.

Many popular performance measures cannot readily deal
with missing ratings. In this paper, we adopt the top-k hit
rate as a natural measure for assessing the accuracy of rec-
ommender systems. In Section 2, we first define the top-k
hit rate, TOPK, and present a second, related performance
measures, named ATOP; both can be estimated without
bias on MNAR data under mild assumptions. While these
measures are computationally tractable for testing recom-
mender systems, they are too costly for training. We thus
resort to surrogate objective functions that are computation-
ally efficient (Section 3). In Section 4, we take a collabora-
tive filtering approach, and present the update equations for
training a matrix factorization model w.r.t. our new objec-
tive functions. Our experiments on publically available data
in Section 6 show that it is essential to account for the fact

that the data are MNAR, and we obtain a significantly im-
proved top-k hit rate. Section 7 summarizes our conclusions
and future work.

2. TEST PERFORMANCE MEASURES
We consider the top-k hit rate as a natural performance

measure for recommender systems in practice, as only a
small number of items can be recommended to a user. Ide-
ally, each of the recommended items is relevant to a user.

Definition (’relevant’): An item is relevant to a user
if s/he finds this item ’appealing’ or ’interesting’. Different
items may be relevant to different users (personalization).
In our notation, a quantity with the superscript ’+’ refers
to relevant items. As to make this general definition more
concrete, concerning the data in our experiments, we con-
sider items with the highest (5 star) rating as relevant to a
user. In case of continuous-valued ratings, one may regard
the values above an appropriate threshold (possibly different
for each user) as relevant.

2.1 (Unknown) Complete Data
In this section, we assume that complete data are avail-

able, i.e., the ratings of all items by all users. This allows
us to define the performance measures we ideally would like
to compute. For a chosen cut-off value k′ ∈ N, the top-k hit
rate may be defined in two alternative ways:

• precision: N+,k′
u /k′,

• recall: N+,k′
u /N+

u ,

where N+,k′
u is the number of items that are relevant to

user u, and which made it into the top k′ items (out of all
items) based on the recommender system’s predictions; and
N+

u denotes the number of items relevant to user u. We
make the following three observations: (1) Precision and re-
call can both be calculated from complete data, i.e., if the
ratings of all N items are known. (2) Typically, however,
most ratings are unobserved: in contrast to precision, re-
call can be estimated from MNAR data without bias under
mild assumptions (see next section). (3) When comparing
different recommender systems to each other on fixed data
and fixed k’, then precision and recall are proportional to
each other, with a (user-dependent) proportionality-factor
k′/N+

u . In other words, the recommender system with the
larger recall also has the larger precision.

In place of the integer-valued k′ as threshold of the top-k
hit rate, we will use a normalized k ∈ [0, 1] in the remainder
of this paper: k = (k′ − 1)/(N − 1) determines the fraction
of items relative to the total number N of items.

For the reasons outlined above, we define the top-k hit
rate as recall (∝ precision, for fixed data and k):

TOPKu(k) =
N+,k

u

N+
u

, (1)

where N+
u denotes all items relevant to user u, and N+,k

u

counts the relevant ones in the top k, as above. Its maximum
value (achieved for perfect recommendations) is k′/N+

u < 1
if k′ < N+

u , and equal to 1 otherwise. The average over all
users u is given by

TOPK(k) =
X

u

wuTOPKu(k), (2)

714

Credit: H. Steck

36/49

Introduction CB CF Eval Deep advances

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Several outcomes:

Changing the error function

Modelling missing values
Switching to a ranking criteria

Changing the task

predicting rated item (not the rate)

36/49

Introduction CB CF Eval Deep advances

How to evaluate RS performance?

Warning

We should not confuse evaluation metrics & learning metrics

⇒ MSE is a convenient learning metrics
(easily di�erentiable + convex ...)

... but it is a poor evaluation metrics
... cf Net�ix Challenge feedbacks

It do not tell us if we provide relevant suggestions

What are the other available metrics?

Have a look towards the IR community

Can we use those metrics during the learning step?

37/49

Introduction CB CF Eval Deep advances

Precision / Recall

Learning
set

RS

u

i12
i8
i42

...

top
k

Ground truth

i1
i42
i8
i9

rui12 > rui8 > rui42 > ...^ ^ ^ M
et

ric
s

?

Precision : Among our k prediction, how many are in the ground truth?

Recall : Among our k prediction, what is the GT coverage ?

38/49

Introduction CB CF Eval Deep advances

1/0 labeling, AUC metrics

Rendle popularize both 1/0 prediction & AUC metrics

AUC = tradeo� between precision & recall

Percentage of correct binary ranking for ONE user
Aggregation over nu users

AUC =
1

nu

∑

u

1

|E(u)|
∑

(i,j)∈E(u)

δ(u · i > u · j)

+ k not required

− top of the list = same impact as bottom of the list

39/49

Introduction CB CF Eval Deep advances

Mean Average Precision (from the IR domain)

RS aim at proposing an ordered list of suggestion...
Which head is far more important than the rest.

For a user u with 4 liked items to discover:

query = u⇒ RS1 ⇒




y

i12
i8
i42
i1


 ⇔




i1
i42
i8
i9


 = GT

Average precision (one query/user) :

1

K

K∑

k=1

precision@K =
1

4
(0 +

1

2
+

2

3
+

3

4
) = 0.478

Mean Average Precision =
Averaging over the whole population

40/49

Introduction CB CF Eval Deep advances

Mean Average Precision (from the IR domain)

RS aim at proposing an ordered list of suggestion...
Which head is far more important than the rest.

For a user u with 4 liked items to discover:

query = u⇒ RS2 ⇒




y

i1
i8
i42
i12


 ⇔




i1
i42
i8
i9


 = GT

Average precision :

1

4

4∑

k=1

precision@K =
1

4
(1 + 1 + 1 +

3

4
) = 0.9375

Mean Average Precision =
Averaging over the whole population

40/49

Introduction CB CF Eval Deep advances

Mean Reciprocal Rank

At which rank is the �rst relevant item?

query = u⇒ RS ⇒




y

i12
i8
i42
i1


 ⇔




i1
i42
i8
i9


 = GT

RR =
1

ranki
=

1

2
on previous example

Mean Reciprocal Rank = Averaging over the whole population

⇒ ≈ How many iterations to obtain a relevant item?

41/49

Introduction CB CF Eval Deep advances

nDCG : Normalized Discounted Cumulative Gain

We assume that we have a relevance score for each item...

query = u⇒ RS ⇒




y

i12 ind = 1
i8 ind = 2
i42 ind = 3
i1 ind = 4


 ⇔




0
2
3
3


 = relevance

DCGp =

p∑

ind=1

relevind
log2(ind+ 1)

= 0 + 1.26 + 1.5 + 1.29 = 4.05

nDCG =
DCG

IdealDCG
=

4.05

3 + 1.89 + 1 + 0/0.86
= 0.69/0.6

Relative ideal (among suggestions) vs Absolute ideal (among all items)

42/49

Introduction CB CF Eval Deep advances

ATOP

recall@k =

#relevant items in top k

#relevant items

Compute all recall@k...
until k match R(u)

Compute the area under the curve

focus on rated items

numerical indicator + graphical details

Copyright © 2010 Alcatel-Lucent. All rights reserved.12 | Recommender Systems | July 2010

Test Performance Measures on MNAR Data

Top-k Hit-Rate:

- depends on k

- ignores ranking

Area under TOPK curve (ATOP):

- independent of k
- in [0,1], larger is better
- captures ranking of all items
- agrees with area under ROC curve in leading order if # relevant items << # items
- unbiased estimate from MNAR data for unknown complete data under above
assumption

k

1

TOPK

10
0

ATOP

normalized w.r.t. # items

H. Steck, KDD, 2010

Training and Testing of Recommender Systems on Data Missing Not at Random

43/49

Introduction CB CF Eval Deep advances

ATOP

Copyright © 2010 Alcatel-Lucent. All rights reserved.21 | Recommender Systems | July 2010

Experimental Results on Netflix Data: Top-k Hit-Rate

Comparison of Approaches:

AllRank (RMSE = 1.106)

ignore missing ratings (RMSE = 0.921)

integrated model [Koren ’08] (RMSE = 0.887)
(trained to minimize RMSE)

39 % …………………………….…………… 50 % larger Top-k Hit-Rate: AllRank vs. integrated model

zoomed into top 2 %:

x

x

x

x

Large increase in Top-k Hit-Rate when
accounting also for missing ratings
when training on MNAR data.

H. Steck, KDD, 2010

Training and Testing of Recommender Systems on Data Missing Not at Random

43/49

Introduction CB CF Eval Deep advances

A/B testing & production launch

In a real situation

Designing an online Recommender System o�ers new performance indicators

Online click, purchase, etc

A/B testing:

1 De�ning some performance indicator with expert

2 Re-direct a small part of the customers to the new system B

make sure that the redirection is random (not biased)

3 Compare indicators from A and B

⇒ Best evaluation...
But only available online & with access to the backo�ce

44/49

Introduction CB CF Eval Deep advances

Serendipity : another important factor to evaluate...

... But very di�cult to quantify

Exploration / exploitation dilemma

Clustering / categorization
exploitation

propose items from di�erent
region

Post processing / HMI issue

Idea to design a metric

1 Learn a strong baseline (SVD)

2 New system RS

3 Unexpectedness = RS\SVD
4 Serendipity =
usefulness(Unexpectedness)

CF can o�er serendipity

increase neighborhood,

increase implicit feedback weight

...

CB is not well adapted

Clustering heuristics

bad performance

M. Ge et al., RecSys, 2010
Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity

45/49

Introduction CB CF Eval Deep advances

Plan

1 Introduction

2 Content Based
Recommender Systems

3 Collaborative �ltering
Recommender Systems

From k-NN to
matrix factorization

4 Evaluation:
evaluation metrics
vs
learning metrics

5 Deep Learning
architectures
to improve
Recommender Systems

46/49

Introduction CB CF Eval Deep advances

SVD is a NN architecture

U

u

Rating matrix

Ii U = {u1, . . . ,unu
}

I = {i1, . . . , ini}
u ∈ Rz, i ∈ Rz

R = {(u, i, rui)}
Estimator : r̂ui = uu · ii

C =
∑

(u,i)∈R

(rui − uu · ii)2

47/49

Introduction CB CF Eval Deep advances

SVD is a NN architecture

U
u

I i

Pr
ed

ict
ion

Lookup tables

Gr
ou

nd
tru

th

MSE

U = {u1, . . . ,unu
}

I = {i1, . . . , ini}
u ∈ Rz, i ∈ Rz

R = {(u, i, rui)}
Estimator : r̂ui = uu · ii

C =
∑

(u,i)∈R

(rui − uu · ii)2

47/49

Introduction CB CF Eval Deep advances

MLP & RS: the simplest architecture

U
u

I i

Pr
ed

ict
ion

Lookup tables

Gr
ou

nd
tru

th

MSE

Non linear
MLP

E.g. 2-layer perceptron

h = f1([uuii] ·W1)

r̂ui = f2(h ·W2)

48/49

Introduction CB CF Eval Deep advances

Deep = Easy handling of heterogeneous data

U u

I

Pr
ed

ict
ion

Lookup tables

Gr
ou

nd
tru

th

MSE

Side information associated to (u,i):
text, time, image...

In
te

rm
ed

iat
e

re
pr

es
en

ta
tio

n
i

Enforce
similarity

Any criterion:
reconstruction,
prediction ...

49/49

Introduction CB CF Eval Deep advances

Deep = Easy handling of heterogeneous data
3. END-TO-END LEARNING

The term end-to-end learning is used to refer to processing
architectures where the entire stack, connecting the input to
the desired output, is learned from data [12]. An end-to-end
learning approach greatly reduces the need for prior know-
ledge about the problem, and minimises the required engi-
neering effort; only the tuning of the model hyperparame-
ters requires some expertise, but even that process can be au-
tomated [13]. Learning features can result in better perfor-
mance than engineering them, because they are automatically
tailored to the task at hand. Furthermore, training the entire
processing architecture can lead to new insights about what
kind of information is salient for a given task [3, 6].

Convolutional neural networks (CNNs) [14] in particu-
lar lend themselves well to this setting, because they consist
of many layers of processing that are all learned using the
same objective function, which is propagated through the net-
work. CNNs have been used for image classification [2, 15],
speech recognition [5], epileptic seizure detection [16], and
many other applications. In music information retrieval, they
have been used for onset detection [17], genre classification
[5, 18, 19], artist recognition [5, 19], instrument classification
[20] and content-based recommendation [21].

4. EXPERIMENTS AND RESULTS

To compare end-to-end learning with the traditional MIR ap-
proach of using a mid-level representation of the audio sig-
nals, we trained deep CNNs to perform automatic tagging on
the Magnatagatune dataset [22]. The dataset contains 25863
29-second audio clips with a sample rate of 16 kHz, taken
from songs by 230 artists, annotated with 188 tags. It comes
in 16 parts, of which we used the first 12 for training, the 13th
for validation and the remaining 3 for testing. We only used
the 50 most frequent tags.

4.1. Experimental setup

The CNN architecture that we used as a basis for all our ex-
periments is visualised in Figure 1. It consists of 6 layers in
total: two convolutional layers with 32 filters of length 8, al-
ternating with max-pooling layers with pooling size 4, and
two dense layers with 100 and 50 units respectively. We used
rectified linear units [23] in all layers except for the top layer,
where we used sigmoidal units. We extended this architecture
for each the experiments described in the following subsec-
tions. Note that all convolutions and pooling operations are
one-dimensional, i.e. only along the axis representing time.
Although we could convolve and pool in the frequency direc-
tion in the case of spectrogram input [24], we did not inves-
tigate this approach here to ensure a fair comparison, as it is
not possible with raw audio input.

(a)

(b)

(c)

tag predictions

6: fully connected #50

5: fully connected #100

4: max-pooling � 4

3: convolution #32 � 8

2: max-pooling � 4

1: convolution #32 � 8

spectrograms

strided conv.

raw audio

feature pooling

strided conv.

raw audio

Fig. 1. The convolutional neural network architecture we
used for our experiments. The filter sizes and pooling sizes
(�) and numbers of units (#) are indicated. We consider
three possible approaches: (a) spectrograms as input, (b) raw
audio as input by adding an additional strided convolutional
layer, and (c) raw audio with feature pooling.

We trained the network using minibatch gradient descent,
with minibatches of 10 examples. We used windows of about
3 seconds of audio as input. To compute tag predictions for a
clip, we averaged the predictions over consecutive windows.
We evaluated the use of dropout regularization [25] in the
fully connected layers, but this did not affect performance
significantly. To evaluate the predictions, we computed the
area under the ROC curve (AUC) for each tag and computed
the average across all 50 tags. For each experiment, we per-
formed roughly 5 million parameter updates and validated the
model at regular intervals. We report results on the test set for
the parameters that achieved the best validation score. We
used the Theano library to enable GPU acceleration [26].

4.2. Spectrograms versus raw audio

To assess whether the task of tag prediction can be solved with
a CNN using only raw audio, we compared two approaches:
• spectrograms: we extracted mel-spectrograms with 128

components, and performed dynamic range compression

7015

[Dieleman, 2014] : audio
recommendation

predict item pro�le from audio
descriptors
⇒ better understanding

[He, 2015] : online product reco.

Image descriptors

[Covington, 2016] : Youtube reco

[Nedelec, 2017] : content2vec

Text + image descriptors

49/49

Introduction CB CF Eval Deep advances

Deep = Easy handling of heterogeneous data

Table 1: Notation

Notation Explanation

U , I user set, item set
I+

u positive item set of user u
bxu,i predicted ‘score’ user u gives to item i
K dimension of latent factors
D dimension of visual factors
F dimension of Deep CNN features
↵ global offset (scalar)
�u, �i user u’s bias, item i’s bias (scalar)
�u, �i latent factors of user u, item i (K ⇥ 1)
✓u, ✓i visual factors of user u, item i (D ⇥ 1)
fi Deep CNN visual features of item i (F ⇥ 1)
E D ⇥ F embedding matrix
�0 visual bias vector (visual bias = �0T fi)

Preference Predictor
Our preference predictor is built on top of Matrix Factoriza-
tion (MF), which is state-of-the-art for rating prediction as
well as modeling implicit feedback, whose basic formula-
tion assumes the following model to predict the preference
of a user u toward an item i (Koren and Bell, 2011):

bxu,i = ↵ + �u + �i + �T
u �i, (1)

where ↵ is global offset, �u and �i are user/item bias terms,
and �u and �i are K-dimensional vectors describing latent
factors of user u and item i (respectively). The inner prod-
uct �T

u �i then encodes the ‘compatibility’ between the user
u and the item i, i.e., the extent to which the user’s latent
‘preferences’ are aligned with the products’ ‘properties’.

Although theoretically latent factors are able to uncover
any relevant dimensions, one major problem it suffers from
is the existence of ‘cold’ (or ‘cool’) items in the system,
about which there are too few associated observations to es-
timate their latent dimensions. Using explicit features can al-
leviate this problem by providing an auxiliary signal in such
situations. In particular, we propose to partition rating di-
mensions into visual factors and latent (non-visual) factors,
as shown in Figure 1. Our extended predictor takes the form

bxu,i = ↵ + �u + �i + �T
u �i + ✓T

u ✓i, (2)

where ↵, �, and � are as in Eq. 1. ✓u and ✓i are newly in-
troduced D-dimensional visual factors whose inner product
models the visual interaction between u and i, i.e., the extent
to which the user u is attracted to each of D visual dimen-
sions. Note that we still use K to represent the number of
latent dimensions of our model.

One naive way to implement the above model would be
to directly use Deep CNN features fi of item i as ✓i in the
above equation. However, this would present issues due to
the high dimensionality of the features in question, for ex-
ample the features we use have 4096 dimensions. Dimen-
sionality reduction techniques like PCA pose a possible so-
lution, with the potential downside that we would lose much
of the expressive power of the original features to explain
users’ behavior. Instead, we propose to learn an embedding

Visual Features

Item
Latent Factors

Item
Factors

EmbeddingPretrained

Deep CNN

Arch. by Krizhevsky et al.

4096×1

D×1

F×1

Biases

Prediction

User
Factors

Item Visual
Factors

Figure 1: Diagram of our preference predictor. Rating di-
mensions consist of visual factors and latent (non-visual)
factors. Inner products between users and item factors model
the compatibility between users and items.

kernel which linearly transforms such high-dimensional fea-
tures into a much lower-dimensional (say 20 or so) ‘visual
rating’ space:

✓i = Efi (3)
Here E is a D ⇥ F matrix embedding Deep CNN feature
space (F -dimensional) into visual space (D-dimensional),
where fi is the original visual feature vector for item i. The
numerical values of the projected dimensions can then be
interpreted as the extent to which an item exhibits a partic-
ular visual rating facet. This embedding is efficient in the
sense that all items share the same embedding matrix which
significantly reduces the number of parameters to learn.

Next, we introduce a visual bias term �0 whose inner
product with fi models users’ overall opinion toward the vi-
sual appearance of a given item. In summary, our final pre-
diction model is

bxu,i = ↵ + �u + �i + �T
u �i + ✓T

u (Efi) + �0T fi. (4)

Model Learning Using BPR
Bayesian Personalized Ranking (BPR) is a pairwise rank-
ing optimization framework which adopts stochastic gradi-
ent ascent as the training procedure. A training set DS con-
sists of triples of the form (u, i, j), where u denotes the user
together with an item i about which they expressed positive
feedback, and a non-observed item j:

DS = {(u, i, j)|u 2 U ^ i 2 I+
u ^ j 2 I \ I+

u }. (5)

Following the notation in Rendle et al. (2009), ⇥ is the pa-
rameter vector and bxuij(⇥) denotes an arbitrary function of
⇥ that parameterises the relationship between the compo-
nents of the triple (u, i, j). The following optimization cri-
terion is used for personalized ranking (BPR-OPT):

X

(u,i,j)2DS

ln�(bxuij)� �⇥||⇥||2 (6)

where � is the logistic (sigmoid) function and �⇥ is a model-
specific regularization hyperparameter.

When using Matrix Factorization as the preference pre-
dictor (i.e., BPR-MF), bxuij is defined as

bxuij = bxu,i � bxu,j ,
1 (7)

where bxu,i and bxu,j are defined by Eq. 1. BPR-MF can be
learned efficiently using stochastic gradient ascent. First a

1Note that ↵ and �u in the preference predictor are canceled out
in Eq. 7, therefore are removed from the set of parameters.

Figure 4: 2-D visualization (with t-SNE (?)) of the 10-D visual space learned from Amazon Women. All images are from the
test set. For clarity, the space is discretized into a grid and for each grid cell one image is randomly selected among overlapping
instances.

3. By combining the strengths of both MF and content-based
methods, VBPR outperforms all baselines in most cases.

4. Our method exhibits particularly large improvements on
Tradesy.com, since it is an inherently cold start dataset
due to the ‘one-off’ nature of trades.

5. Visual features show greater benefits on clothing than
cellphone datasets. Presumably this is because visual fac-
tors play a smaller (though still significant) role when se-
lecting cellphones as compared to clothing.

6. Popularity-based methods are particularly ineffective
here, as cold items are inherently ‘unpopular’.
Finally, we found that pairwise methods indeed out-

perform point-wise methods (WRMF in our case) on our
datasets, consistent with our analysis in Related Work. We
found that on average, VBPR beats WRMF by 14.3% for all
items and 20.3% for cold start items.
Sensitivity. As shown in Figure 2, MM-MF, BPR-MF, and
VBPR perform better as the number of factors increases,
which demonstrates the ability of pairwise methods to avoid
overfitting. Results for other Amazon categories are similar
and suppressed for brevity.
Training Efficiency. In Figure 3 we demonstrate the AUC
(on the test set) with increasing training iterations. Generally
speaking, our proposed model takes longer to converge than
MM-MF and BPR-MF, though still requires only around
3.5 hours to train to convergence on our largest dataset
(Women’s Clothing).

Visualizing Visual Space
VBPR maps items to a low-dimensional ‘visual space,’ such
that items with similar styles (in terms of how users eval-

uate them) are mapped to nearby locations. We visualize
this space (for Women’s Clothing) in Figure 4. We make the
following two observations: (1) although our visual features
are extracted from a CNN pre-trained on a different dataset,
by using the embedding we are nevertheless able to learn
a ‘visual’ transition (loosely) across different subcategories,
which confirms the expressive power of the extracted fea-
tures; and (2) VBPR not only helps learn the hidden taxon-
omy, but also more importantly discovers the most relevant
underlying visual dimensions and maps items and users into
the uncovered space.

Conclusion & Future Work
Visual decision factors influence many of the choices peo-
ple make, from the clothes they wear to their interactions
with each other. In this paper, we investigated the useful-
ness of visual features for personalized ranking tasks on im-
plicit feedback datasets. We proposed a scalable method that
incorporates visual features extracted from product images
into Matrix Factorization, in order to uncover the ‘visual di-
mensions’ that most influence people’s behavior. Our model
is trained with Bayesian Personalized Ranking (BPR) using
stochastic gradient ascent. Experimental results on multiple
large real-world datasets demonstrate that we can signifi-
cantly outperform state-of-the-art ranking techniques and al-
leviate cold start issues.

As part of future work, we will further extend our model
with temporal dynamics to account for the drifting of fash-
ion tastes over time. Additionally, we are also interested in
investigating the efficacy of our proposed method in the set-
ting of explicit feedback.

[Dieleman, 2014] : audio
recommendation

predict item pro�le from audio
descriptors
⇒ better understanding

[He, 2015] : online product reco.

Image descriptors

[Covington, 2016] : Youtube reco

[Nedelec, 2017] : content2vec

Text + image descriptors

49/49

Introduction CB CF Eval Deep advances

Deep = Easy handling of heterogeneous data

user vector

video vectors

averageaverage

watch vector search vector

embedded search tokensembedded video watches

example age
gender

geographic
embedding

training
serving

ReLU

ReLU

ReLU

approx. top N

softmax

class probabilities

nearest neighbor
index

Figure 3: Deep candidate generation model architecture showing embedded sparse features concatenated with
dense features. Embeddings are averaged before concatenation to transform variable sized bags of sparse IDs
into fixed-width vectors suitable for input to the hidden layers. All hidden layers are fully connected. In
training, a cross-entropy loss is minimized with gradient descent on the output of the sampled softmax.
At serving, an approximate nearest neighbor lookup is performed to generate hundreds of candidate video
recommendations.

case in which the user has just issued a search query for“tay-
lor swift”. Since our problem is posed as predicting the next
watched video, a classifier given this information will predict
that the most likely videos to be watched are those which
appear on the corresponding search results page for “tay-
lor swift”. Unsurpisingly, reproducing the user’s last search
page as homepage recommendations performs very poorly.
By discarding sequence information and representing search
queries with an unordered bag of tokens, the classifier is no
longer directly aware of the origin of the label.

Natural consumption patterns of videos typically lead to
very asymmetric co-watch probabilities. Episodic series are
usually watched sequentially and users often discover artists
in a genre beginning with the most broadly popular before
focusing on smaller niches. We therefore found much better
performance predicting the user’s next watch, rather than
predicting a randomly held-out watch (Figure 5). Many col-
laborative filtering systems implicitly choose the labels and
context by holding out a random item and predicting it from
other items in the user’s history (5a). This leaks future infor-

mation and ignores any asymmetric consumption patterns.
In contrast, we “rollback” a user’s history by choosing a ran-
dom watch and only input actions the user took before the
held-out label watch (5b).

3.5 Experiments with Features and Depth
Adding features and depth significantly improves preci-

sion on holdout data as shown in Figure 6. In these exper-
iments, a vocabulary of 1M videos and 1M search tokens
were embedded with 256 floats each in a maximum bag size
of 50 recent watches and 50 recent searches. The softmax
layer outputs a multinomial distribution over the same 1M
video classes with a dimension of 256 (which can be thought
of as a separate output video embedding). These models
were trained until convergence over all YouTube users, corre-
sponding to several epochs over the data. Network structure
followed a common “tower” pattern in which the bottom of
the network is widest and each successive hidden layer halves
the number of units (similar to Figure 3). The depth zero
network is e↵ectively a linear factorization scheme which

194

[Dieleman, 2014] : audio
recommendation

predict item pro�le from audio
descriptors
⇒ better understanding

[He, 2015] : online product reco.

Image descriptors

[Covington, 2016] : Youtube reco

[Nedelec, 2017] : content2vec

Text + image descriptors

49/49

Introduction CB CF Eval Deep advances

Deep = Easy handling of heterogeneous data
Under review as a conference paper at ICLR 2017

Figure 3: An example of using the content-specific modules to create embedded representations of
two products with images, text and CF signal.

In Figure 3 we give an illustrative example of mapping a pair of products to their vectorial represen-
tations.

In the following we analyze four types of input signal and embedding solutions for each one of them.
For all of the modules, we use LNS loss (see eq. 2) as specialization loss.

4.1.1 EMBEDDING PRODUCT IMAGES: ALEXNET

Model and proxy task: CNN for Image Classification For generating the image embeddings we
propose reusing a model trained for image classification, as in previous work by (Krizhevsky et al.,
2012) and (He & McAuley, 2015). In (He & McAuley, 2015), the authors have shown how to use
the Inception architecture (Szegedy et al., 2015) and specialize it for the product recommendation
task. However, the Inception architecture is very deep and requires extensive training time. For ease
of experimentation we use AlexNet, which is a simpler architecture that was also a winner on the
ImageNet task (Krizhevsky et al., 2012) previously to Inception NN. In section 5.2 we will show
that, even if simpler, when combined with additional product text information, the AlexNet-based
solution can perform very well on the recommendation task.
For our experiments, we use the pretrained version of AlexNet available on Toronto’s university
website. We experimented with two different ways to specialize the representation in order to com-
pute product similarities. In the first one, we learn a weighted inner product between the two repre-
sentations (fc7 layer of ImageNet). In the second one, we specialize the fc7 layer to detect product
similarities. The second approach lead to much better performance and is the one for which we
report final results.

4.1.2 EMBEDDING PRODUCT TEXT: WORD2VEC AND CNN ON SENTENCES

Model and proxy task: Word2Vec for Product Language Modeling For generating word em-
beddings, we propose reusing Word2Vec Mikolov et al. (2013b), a model for generating language
models that has been employed in a various of text understanding tasks. More recently, it has been
shown in (Pennington et al., 2014) that Word2Vec is closely linked with matrix factorization tech-
niques applied on the word co-occurrence matrix. For Content2Vec, we chose to pretrain Word2Vec

6

[Dieleman, 2014] : audio
recommendation

predict item pro�le from audio
descriptors
⇒ better understanding

[He, 2015] : online product reco.

Image descriptors

[Covington, 2016] : Youtube reco

[Nedelec, 2017] : content2vec

Text + image descriptors

49/49

	Introduction
	Content Based Recommender Systems
	

