

Cours 3 ML Master DAC

Nicolas Baskiotis

nicolas.baskiotis@sorbonne-universite.fr

équipe MLIA, Institut des Systèmes Intelligents et de Robotique (ISIR) Sorbonne Université

S2 (2022-2023)

1/33

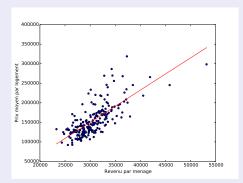
Plan

- Régression linéaire
- Régression logistique
- Descente de gradient
- Interlude
- Perceptron

Introduction

Régression linéaire

- Objectif : prédire une sortie continue réelle y à partir d'un nombre de variables d'entrée
- beaucoup d'applications, très utilisée un peu dans tous les domaines
- très flexible (transformation des entrées)



Formalisation

Objectif

Etant donné un ensemble $\{(\mathbf{x}^j, y^j) \in \mathbb{R}^d \times \mathbb{R}\}_{j=1}^N$, $\mathbf{x}^j = (x_1^j, x_2^j, \dots, x_d^j)$

Hypothèse : variation linéaire de la sortie en fonction des entrées

$$\mathbb{E}[y|\mathbf{x}] = w_0 + \sum_{i=1}^d w_i x_i$$

- ⇒ On cherche :
 - une fonction $f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i$
 - ightharpoonup qui fait le moins d'erreurs : $f(\mathbf{x}^i)$ doit être proche de y^i
 - sous la condition que l'erreur est indépendante de x, de variance σ^2 constante, suit une loi normale.
 - $\Rightarrow y|\mathbf{x} \sim \mathcal{N}(f(\mathbf{x}), \sigma^2)$ (lien avec l'apprentissage bayésien)
 - Mesure d'erreur : coût aux moindres carrés (Mean Squared Error MSE)

$$\ell(f(\mathbf{x}), y) = (f(\mathbf{x}) - y)^2$$

Formalisation (2)

Objectif

Minimiser:

$$\mathbb{E}\left[\ell(f(\mathbf{x}), y)\right] = \int_{\mathbf{x}, y} (y - f(\mathbf{x}))^2 p(\mathbf{x}, y) dx dy$$

• Soit trouver $\mathbf{w} \in \mathbb{R}^{d+1}$ qui minimise :

$$\frac{1}{N} \sum_{j=1}^{N} \ell(f_{\mathbf{w}}(\mathbf{x}), y) = \frac{1}{N} \sum_{j=1}^{N} (y^{j} - f(\mathbf{x}^{j}))^{2} = \frac{1}{N} \sum_{j=1}^{N} (y^{j} - w_{0} - \sum_{i=1}^{d} w_{i} x_{i}^{j})^{2}$$

5/33

Régression : solution analytique

Formalisation

Minimiser:

$$\mathbb{E}(\ell(f(\mathbf{x}), y)) = \int_{\mathbf{x}, y} (y - f(\mathbf{x}))^2 p(\mathbf{x}, y) dx dy$$

• Soit trouver $\mathbf{w} \in \mathbb{R}^{d+1}$ qui minimise :

$$L(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(f_{\mathbf{w}}(\mathbf{x}), y) = \frac{1}{N} \sum_{j=1}^{N} (y^{j} - f(\mathbf{x}^{j}))^{2} = \frac{1}{N} \sum_{j=1}^{N} (y^{j} - w_{0} - \sum_{i=1}^{d} w_{i} x_{i}^{j})^{2}$$

- La fonction $L: \mathbb{R}^{d+1} \to \mathbb{R}$ est convexe
- ⇒ Solution analytique : annuler son gradient !
- \Rightarrow Trouver \mathbf{w}^* tq $\nabla_{\mathbf{w}} L(\mathbf{w}^*) = 0$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

6/33

Dérivée matricielle

Ecriture pratique

$$\bullet \ X = \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^N \end{pmatrix} = \begin{pmatrix} x_1^1 & x_2^1 & \dots & x_d^1 \\ x_1^1 & x_1^2 & \dots & x_d^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^N & x_2^N & \dots & x_d^N \end{pmatrix}, \ Y = \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^N \end{pmatrix}, \ W = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{pmatrix}$$

- $\nabla_{\mathbf{w}} L = 2X'(XW Y)$, w optimal $\Leftrightarrow 2X'(XW Y) = 0$
- Solution : $(X'X)^{-1}X'Y$
- Et pour w_0 ?

7/33

Plan

- Régression linéaire
- Régression logistique
- Descente de gradient
- Interlude
- Perceptron

Problématique

Classification binaire

- Deux classes : $Y = \{-1, +1\}$, et un ensemble d'apprentissage $\{(\mathbf{x}^i, y^i) \in \mathbb{R}^d \times Y\}$
- Peut-on utiliser un coût quadratique dans ce cas ?
 Cas 2D :
 - $f_{\mathbf{w}}(\mathbf{x}) = 1 \Leftrightarrow w_0 + x_1 w_1 + w_2 w_2 = 1$ $f_{\mathbf{w}}(\mathbf{x}) = -1 \Leftrightarrow w_0 + x_1 w_1 + w_2 w_2 = -1$

Problématique

Classification binaire

- Deux classes : $Y = \{-1, +1\}$, et un ensemble d'apprentissage $\{(\mathbf{x}^i, y^i) \in \mathbb{R}^d \times Y\}$
- Peut-on utiliser un coût quadratique dans ce cas ?
 Cas 2D :

$$f_{\mathbf{w}}(\mathbf{x}) = 1 \Leftrightarrow w_0 + x_1 w_1 + w_2 w_2 = 1$$

$$f_{\mathbf{w}}(\mathbf{x}) = -1 \Leftrightarrow w_0 + x_1 w_1 + w_2 w_2 = -1$$

- Et $si f_{\mathbf{w}}(\mathbf{x}) >> 1$?
- ⇒ le coût sera très grand!
 - De même si $f_{\mathbf{w}}(\mathbf{x}) << -1$
- ⇒ Le coût n'est pas adapté à la classification!

9/33

Adaptation du formalisme

Dans chaque région de l'espace, on suppose que :

 le label +1 suit une loi de Bernoulli paramétrée par une fonction dépendant de x:

$$p(y = 1|\mathbf{x}) = \mu(\mathbf{x})$$

• le label -1 également : $p(y = -1|\mathbf{x}) = 1 - \mu(\mathbf{x})$

$$\Rightarrow p(y|\mathbf{x}) = \mu(\mathbf{x})^{\frac{y+1}{2}} (1 - \mu(\mathbf{x}))^{\frac{1-y}{2}}$$

• Comment représenter $\mu(\mathbf{x})$? Fonction linéaire ?

Adaptation du formalisme

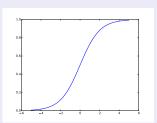
Dans chaque région de l'espace, on suppose que :

 le label +1 suit une loi de Bernoulli paramétrée par une fonction dépendant de x:

$$p(y=1|\mathbf{x}) = \mu(\mathbf{x})$$

- le label -1 également : $p(y = -1|\mathbf{x}) = 1 \mu(\mathbf{x})$
- $\Rightarrow p(y|\mathbf{x}) = \mu(\mathbf{x})^{\frac{y+1}{2}} (1 \mu(\mathbf{x}))^{\frac{1-y}{2}}$
- Comment représenter $\mu(\mathbf{x})$? Fonction linéaire ?
- ⇒ Problème ! pas entre 0 et 1 !
- Transformation d'une fonction linéaire : la fonction sigmoïde.

$$\mu(\mathbf{x}) = \sigma(f_{\mathbf{w}}(\mathbf{x})) = \frac{1}{1 + e^{-f_{\mathbf{w}}(\mathbf{x})}}$$



Quelques remarques importantes

Que représente $f_{\mathbf{w}}(\mathbf{x})$?

- C'est le log-ratio des probabilités : $f_{\mathbf{w}}(x) = \log\left(\frac{\mu(\mathbf{x})}{1-\mu(\mathbf{x})}\right) = \log\left(\frac{p(y=+1|\mathbf{x})}{p(y=-1|\mathbf{x})}\right)$
- qui est approximée par une fonction linéaire : $\log \frac{P(y=+1|\mathbf{x})}{P(y=-1|\mathbf{x})} = w_0 + w_1x_1 + w_2x_2...$
- Quand est-ce que :
 - $p(y = +1|\mathbf{x}) = 0.5$?
 - $p(y = +1|\mathbf{x}) < 0.5$?
 - $p(y = +1|\mathbf{x}) > 0.5$?

Résolution

Maximum de vraissemblance

On cherche à maximiser :

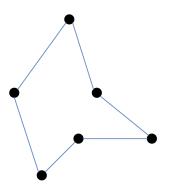
$$P(y^1,\ldots,y^N|\mathbf{x}^1,\ldots,\mathbf{x}^N) = \prod_{i=1}^N P(y^i|\mathbf{x}^i)$$

- \Leftrightarrow maximiser $\log \prod_{i=1}^{N} P(y^{i}|\mathbf{x}^{i})$
- \Leftrightarrow maximiser $\sum_{i=1}^{N} \log P(y^i | \mathbf{x}^i)$
- \Leftrightarrow minimiser $\sum_{i=1}^{N} \log \frac{1}{P(y^i|\mathbf{x}^i)}$
- \Leftrightarrow minimiser $\sum_{i=1}^{N} \log \frac{1}{\sigma(-y^{i}f_{\mathbf{w}}(\mathbf{x}^{i}))}$
- $\Leftrightarrow \text{ On cherche } \mathbf{w}^* = \text{argmin}_{\mathbf{w}} \ \, \textstyle \sum_{i=1}^N \log \left[1 + \exp \left(y^i f_{\mathbf{w}}(\mathbf{x}^i) \right) \right]$

Résolution

- Pas de solution analytique.
- Méthode d'optimisation numérique → descente de gradient.

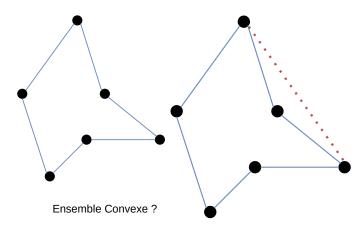
4 D > 4 A > 4 B > 4 B > B 900



Ensemble Convexe?

13/33

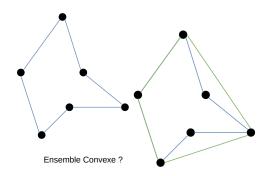
N. Baskiotis (ISIR, SU)



- *C* ensemble convexe de \mathbb{R}^n : $\forall x,y \in C, \forall \lambda \in [0,1], \lambda x + (1-\lambda)y \in C$
- $\sum_i \lambda_i x_i$ est une combinaison convexe ssi $\forall i, \lambda_i \geq 0$ et $\sum_i \lambda_i = 1$
- Enveloppe convexe d'un ensemble fini $\{x_i\}, i = 1 \dots n$: toutes les combinaisons convexes de l'ensemble

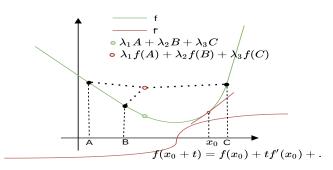
S2 (2022-2023)

13/33



- *C* ensemble convexe de \mathbb{R}^n : $\forall x, y \in C, \forall \lambda \in [0, 1], \lambda x + (1 \lambda)y \in C$
- $\sum_i \lambda_i x_i$ est une combinaison convexe ssi $\forall i, \lambda_i \geq 0$ et $\sum_i \lambda_i = 1$
- Enveloppe convexe d'un ensemble fini $\{x_i\}, i=1...n$: toutes les combinaisons convexes de l'ensemble

13/33



Notations et rappels

• Fonction $f: X \to \mathbb{R}$ convexe ssi

$$\forall x, x' \in X, \forall \lambda \in [0, 1] \ tq \ \lambda x + (1 - \lambda x') \in X$$

alors
$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

• si $\lambda_i \geq 0$ et $\sum_i \lambda_i = 1$, alors $f(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i f(x_i)$ (inégalité de Jensen)

Différentiabilité

- Si $f: X \to \mathbb{R}$ est convexe ssi $\forall x, x' \in X, f(x') \ge f(x) + < x' x, \nabla f(x) > 0$
- Si f convexe, alors sa matrice hessienne est définie semi-positive : $\nabla^2 f > 0$.

Minimum

- Si f atteint son minimum, alors les minimums forment un ensemble convexe.
- Si l'ensemble est strictement convexe, le minimum est un singleton.
- Si f est strictement convexe, son gradient ne s'annule que à son minimum local.

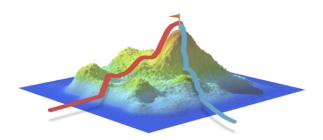
14/33

Plan

- Régression linéaire
- 2 Régression logistique
- Descente de gradient
- Interlude
- Perceptron

Principe

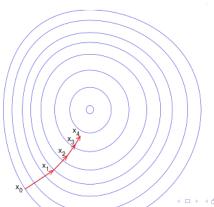
- Algorithme d'optimisation différentiable
- S'applique pour toute fonction différentiable
- Idée simple : améliorer de façon itérative la solution courante



Algorithme du gradient

Algorithme

- Choisir un point x_0
- 2 Itérer :
 - ▶ Calculer $\nabla f(x_t)$
 - mettre à jour $x_{t+1} \leftarrow x_t \alpha \nabla f(x_t)$



17/33

Pourquoi cela fonctionne?

Développement de Taylor

- $f(\mathbf{x}) = f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1) \times (\mathbf{x} \mathbf{x}_1) + O(||\mathbf{x} \mathbf{x}_1||^2)$
- On cherche à "bouger" dans une direction \mathbf{u} de façon à minimiser f:

$$f(\mathbf{x}_1 + h\mathbf{u}) - f(\mathbf{x}_1) = h\nabla f(\mathbf{x}_1)\mathbf{u} + h^2O(1)$$

- On doit donc minimiser $\nabla f(\mathbf{x}_1)\mathbf{u}$.
- On choisit le vecteur unité $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_1)}{||\nabla f(\mathbf{x}_1)||}$

Plusieurs variantes:

- Hill climbing dans le cas discret
- Coordinate descent (line search selon les dimensions)
- Conjugate Gradient

Importance du pas de gradient

Algorithme

- Choisir un point x_0
- 2 Itérer :
 - ightharpoonup Calculer $\nabla f(x_t)$
 - ► mettre à jour $x_{t+1} \leftarrow x_t \alpha \nabla f(x_t)$

Remarques

- Que se passe-t-il si :
 - $\sim \alpha$ est choisi trop grand ?
 - trop petit ?
- Est-ce que l'on atteint toujours un minimum global ?
- Application à la régression logistique ?

Variantes de l'algorithme

- Cas hors-ligne (ou batch) :
 Pour chaque époque (correction de w), on itère sur toute la base d'exemples
- Cas en-ligne (stochastique) :
 Une correction de w est faîte par rapport à un exemple tiré au hasard dans la base.
- hybride : mini-batch
 Des petits sous-ensembles d'exemples sont tirés au hasard, la correction se fait selon le gradient calculé sur ces exemples.

Avantages et inconvénients?

- Batch : plus stable, plus rapide
- Stochastique : bien meilleur tolérance au bruit !

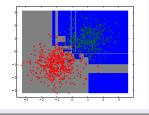
20/33

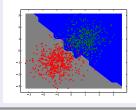
Plan

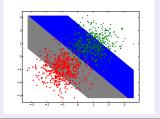
- Régression linéaire
- Régression logistique
- Descente de gradient
- 4 Interlude
- Perceptron

On réfléchit un peu

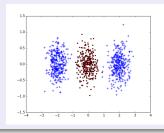
Quelle approche correspond à quelle frontière ?

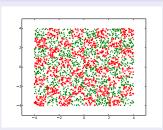




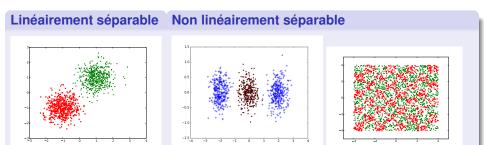


Et pour ces cas?





Espace linéairement séparable



Conclusion (temporaire)

Importance:

- de l'espace de fonctions considéré (choisi a priori)
- du paramétrage des algorithmes
- → notion d'expressivité ...

à suivre.

23/33

Plan

- Régression linéaire
- Régression logistique
- Descente de gradient
- Interlude
- Perceptron

Historique

Prémisses

- McCullogh et Pitts (1943): 1er modèle de neurone formel. Base de l'IA
- Règle de Hebb (1949) : apprentissage par renforcement du couplage synaptique

Premières réalisations

- Adaline (Widrow-Hoff, 1960)
- Perceptron (Rosenblatt, 1958-1962)
- Analyse de Minsky et Papert (1969)

Développement

- Réseau bouclé (Hopfield 1982)
- Réseau multi-couches (1985)

Deuxième renaissance

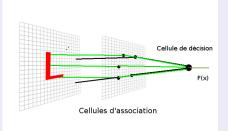
• Réseaux profonds (2000-)

25/33

Le perceptron de Rosenblatt (1960)

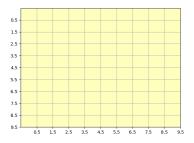
L'idée

- Reconnaissance de forme (pattern) entre deux classes
- Inspirée du cortex visuel

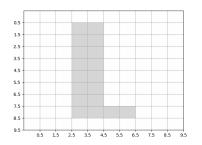


- Chaque cellule d'association produit une sortie $x_i(S)$ en fonction d'un stimulus
- La cellule de décision répond selon une fonction seuil : $\sum w_i x_i(S) > \theta \implies +1 \text{ sinon } -1$

26/33



Etat initial des poids



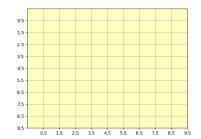
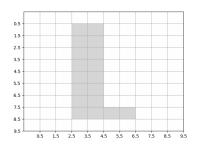


Image 1, Poids initiaux

27/33



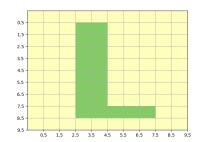
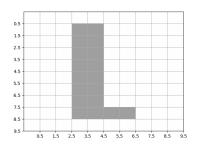


Image 1, Poids 1

27/33



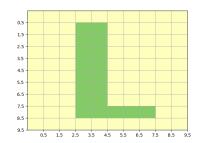
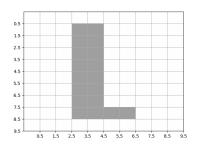


Image 2, Poids 1

27/33



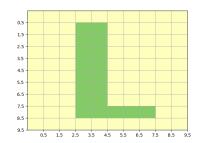
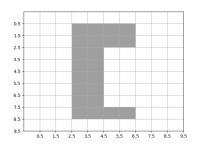


Image 2, Poids 2

27/33



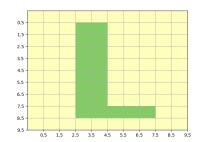
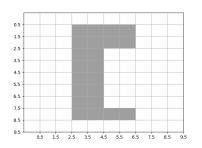


Image 3, Poids 2

27/33



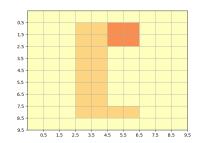
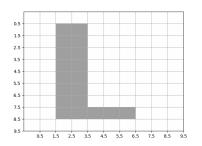


Image 3, Poids 3

27/33



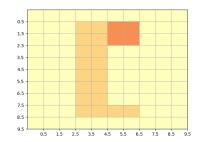
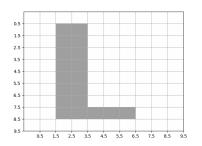


Image 4, Poids 3

27/33



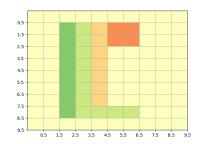
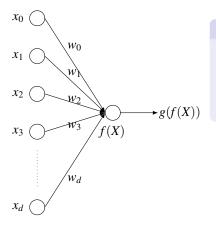


Image 4, Poids 4

27/33

Formalisation



Le perceptron considère

- Fonction de décision : g(x) = sign(x)
- \rightarrow Sortie : $g(f(\mathbf{x})) = sign(\langle \mathbf{x}, \mathbf{w} \rangle)$

Algorithme d'apprentissage

Algorithme du perceptron

- Initialiser au hasard w
- Tant qu'il n'y a pas convergence :
- pour tous les exemples (x^i, y^i) :

$$\mathsf{si} (y^i \times \langle \mathbf{w}.\mathbf{x}^i \rangle) < 0 \text{ alors } \mathbf{w} = \mathbf{w} + \epsilon y^i \mathbf{x}^i$$

• Décision : $f(x) = sign(\langle \mathbf{w} \mathbf{x} \rangle)$

29/33

Autre formulation

A quoi correspond la règle de mise à jour :

- Si $(y < \mathbf{w}.\mathbf{x} >) > 0$ ne rien faire
- Si $(y < \mathbf{w}.\mathbf{x} >) < 0$ corriger $\mathbf{w} = \mathbf{w} + y\mathbf{x}$?

30/33

Autre formulation

A quoi correspond la règle de mise à jour :

- Si $(y < \mathbf{w}.\mathbf{x} >) > 0$ ne rien faire
- Si $(y < \mathbf{w}.\mathbf{x} >) < 0$ corriger $\mathbf{w} = \mathbf{w} + y\mathbf{x}$?

Hinge loss

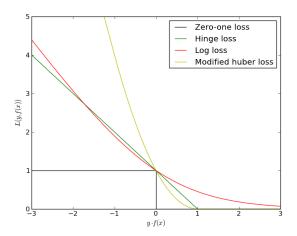
$$l(f(x), y) = max(0, \alpha - yf(x))$$
 avec $\alpha = 0$

Descente de gradient!

- $\nabla_w l(f_w(x), y) = \begin{cases} 0 & \text{si } (y < w.\mathbf{x} >) > \alpha \\ -yx_i & \text{sinon} \end{cases}$

À quoi sert ce α ?

Et pourquoi pas d'autres erreurs ?



Théorème de convergence (Novikov, 1962)

- Si
 - $ightharpoonup \exists R, \forall x : ||x|| \leq R$
 - les données peuvent être séparées avec une marge ρ
 - l'ensemble d'apprentissage est présenté au perceptron un nombre suffisant de fois
- alors après au plus R^2/ρ^2 corrections, l'algorithme converge.

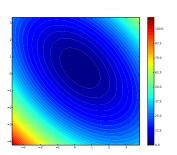
32/33

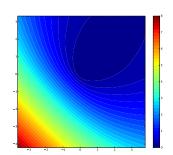
Exploration de l'espace des solutions

Vision duale de l'espace des exemples

- $R_{hinge}(f_{\mathbf{w}}) = \mathbb{E}(l_{hinge}(f_{\mathbf{w}}(x), y)) = \mathbb{E}(max(0, -f_{\mathbf{w}}(x)y))$
- $R_{mse}(f_{\mathbf{w}}) = \mathbb{E}(l_{mse}(f_{\mathbf{w}}(x), y)) = \mathbb{E}((f_{\mathbf{w}}(x) y)^2)$

Pour un ensemble fixé de données, le risque est vu comme une fonction de w.





33/33