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Course 
Half a page describing how to use recurrent neural networks for language modeling and word 
embeddings. 

BP as constrained optimization 
Notational conventions for gradients are indicated at the end of the document. 

We consider a Multilayer Perceptron, (MLP), we denote 𝒙𝒙 an input vector, 𝒚𝒚 a target vector, 𝐹𝐹 = 𝐹𝐹𝑙𝑙 ∘
… ∘ 𝐹𝐹1 the function corresponding to the MLP,  𝒛𝒛(𝑖𝑖) = 𝐹𝐹𝑖𝑖 ∘… ∘ 𝐹𝐹1(𝒙𝒙), 𝑖𝑖 = 1 … 𝑙𝑙  the vector value at 
layer 𝑖𝑖, with 𝒛𝒛(0) = 𝒙𝒙 being the input, 𝒘𝒘(𝑖𝑖) the parameter vector corresponding to 𝐹𝐹𝑖𝑖.  Each 𝐹𝐹𝑖𝑖  
applies a linear transformation of its input followed by a sigmoid non linearity.  

With these notations 𝒛𝒛 and 𝒘𝒘 are vectors of the appropriate size, e.g. using matrix notations,  𝒛𝒛(𝑖𝑖) is 
𝑛𝑛𝒛𝒛(𝑖𝑖) × 1 and 𝒘𝒘(𝑖𝑖) is 𝑛𝑛𝒘𝒘(𝑖𝑖) × 1. Scalars are in italics and vectors in bold. 

Let us consider the following optimization problem (Pb1) 

𝑀𝑀𝑀𝑀𝑛𝑛𝒘𝒘𝑐𝑐 = 𝑐𝑐(𝒛𝒛(𝑙𝑙),𝒚𝒚)   

Subject to constraint 

⎩
⎨

⎧
𝒛𝒛(𝑙𝑙) = 𝐹𝐹𝑙𝑙(𝒛𝒛(𝑙𝑙 − 1),𝒘𝒘(𝑙𝑙))                   
𝒛𝒛(𝑙𝑙 − 1) = 𝐹𝐹𝑙𝑙−1(𝒛𝒛(𝑙𝑙 − 2),𝒘𝒘(𝑙𝑙 − 1))

…
𝒛𝒛(1) = 𝐹𝐹1�𝒙𝒙,𝒘𝒘(1)�                             

 

Where 𝑐𝑐() is a differentiable loss function, 𝒛𝒛(𝑙𝑙) is then the computed output of the network and 𝒚𝒚 
the target. 𝑐𝑐 is the loss for one datum (𝑥𝑥,𝑦𝑦) only. 

1. Show that the Lagrangian ℒ associated to this problem writes : 

ℒ(𝑥𝑥,𝒘𝒘) = 𝑐𝑐(𝒛𝒛(𝑙𝑙),𝑦𝑦) −�𝜆𝜆𝑖𝑖𝑇𝑇(𝒛𝒛(𝑖𝑖) − 𝐹𝐹𝑖𝑖(𝑧𝑧(𝑖𝑖 − 1),𝒘𝒘(𝑖𝑖))
𝑙𝑙

𝑖𝑖=1

 

Where the 𝜆𝜆𝑖𝑖 are the vectors of Lagrange coefficients (of size 𝑛𝑛𝒛𝒛(𝑖𝑖) × 1). 

2. Derive the expressions for the following derivatives and gradients: 𝜕𝜕ℒ
𝜕𝜕𝜆𝜆𝑖𝑖

, 𝑖𝑖 = 1 … 𝑙𝑙; 𝜕𝜕ℒ
𝜕𝜕𝒛𝒛(𝑙𝑙)

 ;   
𝜕𝜕ℒ
𝜕𝜕𝒛𝒛(𝑖𝑖)

, 𝑖𝑖 = 1 … 𝑙𝑙 − 1;  𝜕𝜕ℒ
𝜕𝜕𝑊𝑊𝑖𝑖

, 𝑖𝑖 = 1 … 𝑙𝑙 

3. A necessary condition for a minimum is that 𝜕𝜕ℒ
𝜕𝜕𝜆𝜆𝑖𝑖

= 0, 𝑖𝑖 = 1 … 𝑙𝑙 and 𝜕𝜕ℒ
𝜕𝜕𝒘𝒘(𝑖𝑖)

= 0, 𝑖𝑖 = 1 … 𝑙𝑙 , what 

is the interpretation of the first condition 𝜕𝜕ℒ
𝜕𝜕𝜆𝜆𝑖𝑖

= 0, 𝑖𝑖 = 1 … 𝑙𝑙 ? 

4. Let us suppose that this first condition is met, show that one can choose any value for the 𝜆𝜆𝑖𝑖𝑠𝑠 
in order to solve (Pb1) 

5. We will then choose the 𝜆𝜆𝑖𝑖𝑠𝑠 such that 𝜕𝜕ℒ
𝜕𝜕𝒛𝒛(𝑖𝑖)

= 0, 𝑖𝑖 = 1 … 𝑙𝑙 − 1. Show that the 𝜆𝜆𝑖𝑖𝑠𝑠 can be 

computed sequentially, starting from 𝜆𝜆𝑙𝑙  



6. Show that 𝜕𝜕ℒ
𝜕𝜕𝒘𝒘(𝑖𝑖)

 can then be easily computed. 

7. Give an algorithm for training a MLP using the above formalism. 
8. Instantiation: we consider a simple classical 2 layer MLP, with a single output, targets 𝑦𝑦 ∈

{0,1} for binary classification, trained according to a cross-entropy criterion.  Derive the 

values for the following expressions: 𝜆𝜆2, 𝜆𝜆1, 𝜕𝜕ℒ
𝜕𝜕𝒘𝒘(2)

, 𝜕𝜕ℒ
𝜕𝜕𝒘𝒘(1)

. 

Neural Networks and conditional density mixture 
Let us suppose available 𝑁𝑁 independent observations 𝐷𝐷 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖); 𝑖𝑖 = 1 …𝑁𝑁} with 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛, 𝑦𝑦 ∈ 𝑅𝑅. 
Let us denote 𝑋𝑋 the 𝑛𝑛x𝑁𝑁 matrix of observations 𝒙𝒙𝑖𝑖 (𝒙𝒙𝑖𝑖s are the columns of 𝑋𝑋) and 𝑌𝑌 = (𝑦𝑦1, … ,𝑦𝑦𝑁𝑁)𝑇𝑇. 
Our objective is to model a multimodal conditional distribution  𝑝𝑝(𝑦𝑦|𝒙𝒙). This means that to the same 
value 𝒙𝒙 may correspond several values 𝑦𝑦 or modes. Our objective here is to learn such conditional 
multimodal distributions. For that, one will use a conditional mixture model: 

𝑝𝑝(𝑦𝑦|𝒙𝒙) = �𝜋𝜋𝑘𝑘(𝒙𝒙)𝑝𝑝𝑘𝑘(𝑦𝑦|𝒙𝒙)
𝐾𝐾

𝑘𝑘=1

  

The 𝜋𝜋𝑘𝑘 are mixture coefficients and the  𝑝𝑝𝑘𝑘(𝑦𝑦|𝒙𝒙) are the corresponding mixture components,  𝐾𝐾 is 
the number of components. Depending on the problem, these components can be chosen according 
to different distributions. Here we will consider conditional Gaussians for a regression problem. 

𝑝𝑝𝑘𝑘(𝑦𝑦|𝒙𝒙) = 𝒩𝒩(𝑦𝑦|𝜇𝜇𝑘𝑘(𝒙𝒙),𝜎𝜎𝑘𝑘2(𝒙𝒙)) 

The mean 𝜇𝜇𝑘𝑘(𝒙𝒙) ∈ 𝑅𝑅 , the variance 𝜎𝜎𝑘𝑘2(𝒙𝒙) ∈ 𝑅𝑅+ and the proportion 𝜋𝜋𝑘𝑘(𝒙𝒙) are explicit functions of   𝒙𝒙 
and will be computed with a NN. 

The 𝜋𝜋𝑘𝑘(𝒙𝒙) are constrained to verify ∑ 𝜋𝜋𝑘𝑘(𝒙𝒙) = 1𝐾𝐾
𝑘𝑘=1  and 0 ≤ 𝜋𝜋𝑘𝑘(𝒙𝒙) ≤ 1. This is implemented via a 

softmax: 

𝜋𝜋𝑘𝑘(𝒙𝒙) =
exp(𝑎𝑎𝑘𝑘𝜋𝜋)

∑ exp(𝑎𝑎𝑙𝑙𝜋𝜋)𝐾𝐾
𝑙𝑙=1

 

The variances shall remain positive: 𝜎𝜎𝑘𝑘(𝒙𝒙) = exp (𝑎𝑎𝑘𝑘𝜎𝜎), the means are denoted 𝜇𝜇𝑘𝑘(𝒙𝒙) = 𝑎𝑎𝑘𝑘
𝜇𝜇 . 

 𝑎𝑎𝑘𝑘𝛼𝛼 ∈ 𝑅𝑅 for 𝛼𝛼 = 𝜋𝜋,𝜎𝜎, 𝜇𝜇. 

1. Computing and learning the mixture parameters require computing the 𝑎𝑎𝑘𝑘𝛼𝛼 for = 𝜋𝜋, 𝜎𝜎, 𝜇𝜇 . 
How can the conditional mixture model be implemented via a neural network such as a 
multilayer perceptron for example? 

2. Let us denote  𝐿𝐿(𝒘𝒘) = ∑ 𝐿𝐿𝑖𝑖(𝒘𝒘)𝑁𝑁
𝑖𝑖=1  the log likelihood of this model with 𝐿𝐿𝑖𝑖(𝒘𝒘) the log 

likelihood component for  (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) and  𝒘𝒘 the parameters of the neural network. 𝐿𝐿𝑖𝑖(𝒘𝒘) =
log∑ 𝜋𝜋𝑘𝑘(𝒙𝒙𝒊𝒊)𝑝𝑝𝑘𝑘(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊)𝐾𝐾

𝑘𝑘=1 . For simplification, one denotes  𝜋𝜋𝑘𝑘(𝒙𝒙𝒊𝒊) = 𝜋𝜋𝑘𝑘, 𝑝𝑝𝑘𝑘(𝑦𝑦𝑖𝑖|𝒙𝒙𝒊𝒊) = 𝑝𝑝𝑖𝑖𝑖𝑖. In 
order to compute the derivatives w.r.t. 𝒘𝒘, one needs the derivatives w.r.t. the  𝑎𝑎𝑘𝑘𝛼𝛼. Derive 

the expressions for   𝜕𝜕𝐿𝐿𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑎𝑎𝑗𝑗

𝜋𝜋 ,  𝜕𝜕𝐿𝐿𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑎𝑎𝑗𝑗

𝜇𝜇  and 𝜕𝜕𝐿𝐿𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑎𝑎𝑗𝑗

𝜎𝜎 . 

3. Once trained, the network can be used for computing different statistics. Show that the 
conditional mean  𝐸𝐸[𝑦𝑦|𝒙𝒙], and the conditional  variance 𝑠𝑠2(𝒙𝒙) = 𝐸𝐸[(|𝑦𝑦 − 𝐸𝐸[𝑦𝑦|𝒙𝒙]|)2] can 
respectively be written down as: 

𝐸𝐸[𝑦𝑦|𝒙𝒙] = � 𝜋𝜋𝑘𝑘(𝒙𝒙)𝜇𝜇𝑘𝑘(𝒙𝒙)            
𝑁𝑁

{𝑘𝑘=1}

  and              𝑠𝑠2(𝒙𝒙) = � 𝜋𝜋𝑘𝑘(𝜎𝜎𝑘𝑘2 + (𝜇𝜇𝑘𝑘 − 𝐸𝐸[𝑦𝑦|𝒙𝒙])2)
𝐾𝐾

{𝑘𝑘=1}

 



Useful formulas 
Notations: let 𝛼𝛼 ∈ 𝑅𝑅, 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 ,𝑦𝑦 ∈ 𝑅𝑅𝑚𝑚  

The usual convention for vector notations and derivatives are the following 

Vector: 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 

Scalar by vector: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

,⋯ , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

� 

Vector by vector: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

⎝

⎛

𝜕𝜕𝑦𝑦1
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑦𝑦1
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑦𝑦𝑚𝑚
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑦𝑦𝑚𝑚
𝜕𝜕𝑥𝑥𝑛𝑛⎠

⎞ 
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