BBRL foundations

Olivier Sigaud

Sorbonne Université http://www.isir.upmc.fr/personnel/sigaud

Outline

Part 1: a standard RL model: Stable Baselines 3 (SB3)

DES SYSTÈME

・ロト ・回 ト ・ヨト ・ヨト

- Limitations of the SB3 model
- Part 2: the BBRL model (inherited from SaLiNa)
- Overview of the main choices

The gym interaction loop

Retrieve first observation obs = env.reset() done = Falsetotal reward = 0 while not done: # The agent predicts the action to take given the observation action, = agent.predict(obs, deterministic) # Check that predict is properly used: we use discrete actions, # therefore `action` should be an int here assert env.action space.contains(action) # The environment performs a step and produces the next state, the reward # and whether the episode is over. The info return is a placeholder for # any supplementary information that one may need. obs, reward, done, info = env.step(action) # The total reward over the episode is the sum of rewards at each step # no discount here, discount is used in the reinforcement learning process total reward += reward return total reward

- The gym interaction loop is central to evo and RL libraries
- It can be deep inside these libraries, we don't want users to add code into this core
- Two options:
 - From the environment side: wrappers
 - From the outside: callbacks
- Video presenting these SB3 aspects: https://www.youtube.com/watch?v=l8bskJul9qU (in french)
- And the corresponding colab: https://colab.research.google.com/drive/1sBZLs-GaM8Xx7MsF6sUH7LIj6GwCq5VW?usp=sharing

Gym env wrappers

- Similar to the Decorator pattern
- Makes it possible to do additional (hidden) things when interacting with the environment (e.g. RewardScalingWrapper)
- Or to modify the interactions with the environment
- Main interest: the main loop is unaffected

э

イロン スピン メヨン イロン

Callbacks

- Similar to the Visitor pattern
- Some objects deriving from the Callback class are registered
- One callback is the CallbackList (if we need several)
- Example callback: the eval callback
- ► Good practice: separate evaluation from training

Data collection: separating evaluation from training

- Training curve: what do we evaluate?
- Dimension everything in time steps

Wrappers vs Callbacks

- Callbacks require additional code (wrappers don't)
- Callbacks cannot get data from the main loop (no parameters)
- Better to do things unrelated to the training loop (e.g. eval)

Part I: SB3 from the core

L Data Management

Buffers

- On-policy algorithms use the RolloutBuffer
- Off-policy algorithms use the ReplayBuffer
- REINFORCE uses the EpisodicBuffer
- Need to store data from the main loop

Limitations of the SB3 model

- The main loop must be equipped with callback-related code
- Needs storing into buffers (unnecessary in evolutionary methods)
- Possible alternative: move data collection into dedicated wrappers (large refactoring)
- SB3 does not support training from multiple environments at a time
- It supports evaluating from several environments at a time (VecEnv)
- SB3 is not appropriate for teaching RL: too many things "under the hood", large code, hard to dig in
- Best for using RL as a non-expert (black box approach)

BBRL overview

EnvAgent	1	v	vork	spa	ice			
obs = reset() obs, rw, done = step(action)	obs :		02 0 1		O_n	o_{n+1}		
	reward:	0	r_1		r_n^{n-1}	r_{n+1}		
ActionAgent action = forward(obs)	done :	False	False		False	True		

- BBRL stands for "BlackBoard RL"
- It is a derivation from SaLinA, all properties come from there
- The workspace is a black board where all agents read and write temporal data
- Everything else is an agent
- Agents are pytorch nn.Modules: easy to move to CPU/GPU, to distribute, etc.
- Data is organized into temporal tensors which facilitate gradient processing

FTOF 80801

э

RL in BBRL

- By contrast to SaLinA, BBRL is limited to RL
- One agent is the Gym environment: NoAutoResetGymAgent or AutoResetGymAgent
- Other agents are RL agents
- There might be additional agents (e.g. PrintAgent for debug)
- GymAgents support training and evaluating over several environments

Why NoAutoReset and AutoReset?

- When running an agent in several environments, some environments may finish sooner than others (e.g. CartPole, when the pole falls)
- What shall we do?
- ▶ Wait until all environments end? \rightarrow NoAutoResetGymAgent
- This is simpler, but a waste of time
- \blacktriangleright Restart each environment when it finishes? \rightarrow AutoResetGymAgent
- Raises additional difficulties...

Gym environments: NoAutoReset

Finished environments repeat their data until the end of all episodes

state : s_0	s_1	 s_n	s_n	s_n	s_n
action: a_{0}	a_1	 a_n	a_n	a_n	a_n
reward: r_{0}	r_1	 r_n	r_n	r_n	r_n
done : False	False	 True	True	True	True

This facilitates checking all is finished and collecting results in the end

Env_1	done: cumulated reward:	False 0.8	False 1.2	 2.4	False 3.8	True 3.8	True 3.8		True 3.8
Env_2	: done cumulated reward	False 1.2	False 3.8		True 5.1	True 5.1	True 5.1		True 5.1
Env_3	done : cumulated reward:	False 1.7	False 4.0		False 5.1	False 6.3		False 9.2	True 9.2

- use stop_variable="env/done"
- Perfect for evaluating an agent over N episodes
- The N episodes are run in parallel

・ロト ・回 ト ・ヨト ・ヨト

Gym environments: AutoReset

If all environments restart, we may specify blocks of arbitrary duration

					re	eset ∳				re	eset ¥
obs :	o_1	o_2		o_n	o_{n+1}	o_1	o_2		o_n	o_{n+1}	
action :	None	a_1		a_{n-1}	a_n	None	a_1		a_{n-1}	a_n	
reward:	0	r_1	•••	r_n	r_{n+1}	0	r_1	•••	r_n	r_{n+1}	
done :	False	False	•••	False	True	False	False	•••	False	True	•••

This will make it possible to learn after each block, more often than with long episodes

This will raise other difficulties...

・ロト ・回ト ・ヨト ・ヨト

AutoReset: collecting blocks of data

When collecting blocks of data, one should not loose the inter-block

transition

Solution: copy the last data of the previous block

э

・ロト ・日ト ・ヨト ・ヨト

Avoiding learning from inter-episode transitions

- Some transitions correspond to the last data from an episode and the first data of the next
- The agent should not learn from such transitions (it is teleported)
- SaLinA had bugs with this case
- Solution: reorganize data and remove these transitions

$$\begin{bmatrix} \operatorname{step}_0 \\ \operatorname{step}_1 \\ \operatorname{step}_2 \\ \operatorname{step}_3 \\ \operatorname{step}_4 \end{bmatrix} = > \begin{bmatrix} \operatorname{step}_0, \operatorname{step}_1 \\ \operatorname{step}_1, \operatorname{step}_2 \\ \operatorname{step}_2, \operatorname{step}_3 \\ \operatorname{step}_3, \operatorname{step}_4 \end{bmatrix} = > \begin{bmatrix} \operatorname{step}_0, \operatorname{step}_1 \\ \operatorname{step}_1, \operatorname{step}_2 \\ \operatorname{step}_3, \operatorname{step}_4 \end{bmatrix} = > \begin{bmatrix} \operatorname{step}_0, \operatorname{step}_1 \\ \operatorname{step}_1, \operatorname{step}_2 \\ \operatorname{step}_3, \operatorname{step}_4 \end{bmatrix}$$

In practice, call worskspace.get_transitions()

イロン イロン イヨン イヨン

Some luck with the transition data structure

- The standard code to get a target value:
- $\blacktriangleright target = reward[:-1] + gamma * max_q[1:] * must_bootstrap[1:].int()$
- In the NoAutoResetGymAgent case:

reward:
$$[r_0 \quad r_1 \quad \dots \quad r_n \quad r_n]$$
max_q: $[q_0 \quad q_1 \quad \dots \quad q_n \quad q_{n+1}]$

In the AutoResetGymAgent case:

- The same formula works for the different structures!
- This is just a lucky choice

・ロト ・回ト ・ヨト ・ヨト

get_transitions(): more details

- ▶ If n_env > 1, before get_transitions(): $[step_0^1 step_0^2 ... step_0^{n_env}]$
- After get_transitions(), the vector is broken into pieces:
- Each key of the returned workspace has dimensions [2, n_transitions, key_dim]

 $\begin{array}{l} \blacktriangleright \ key[0][0], key[1][0] = (step_1, step_2) \, \# \, for \, env \, 1\\ key[0][1], key[1][1] = (step_1, step_2) \, \# \, for \, env \, 2\\ key[0][2], key[1][2] = (step_2, step_3) \, \# \, for \, env \, 1\\ key[0][3], key[1][3] = (step_2, step_3) \, \# \, for \, env \, 2 \end{array}$

Must bootstrap?

- The standard code to get a target value:
- $\blacktriangleright target = reward[:-1] + gamma * max_q[1:] * must_bootstrap[1:].int()$

DES SYSTÈMES

INTELLIGENTS FT OF ROBOTO

19 / 21

Standard or Sutton&Barto's notation?

- Most often (as in my slides), one writes transitions $\langle s_t, a_t, r_t, s_{t+1} \rangle$
- I.e. the reward is at the same time step than the action taken, but not the next state
- It would make more sense to write $\langle s_t, a_t, r_{t+1}, s_{t+1} \rangle$ (that's what Sutton&Barto do, cf. footnote 3 page 54 of the 2018 edition)
- BBRL offers both options:

state :	s_0	s_1	 s_n	s_{n+1}
action:	a_0	a_1	 a_n	a_{n+1}
reward:	0	r_1	 r_n	r_{n+1}
done :	False	False	 False	True

state : action :	$\frac{s_0}{a_0}$	$\frac{s_1}{a_1}$	 $\frac{s_n}{a_n}$	s_{n+1} a_{n+1}
reward:	r_0	r_1	 r_n	rn+1
done :	False	False	 False	True

・ロト ・回ト ・ヨト ・ヨト

- Use bbrl.agents.gymb and bbrl.utils.functionalb instead of bbrl.agents.gyma and bbrl.utils.functional to use the standard notation
- Change the reward index accordingly...

BBRL foundations

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

・ロ・・ (日・・ ヨ・・ モ・

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P. (2018).

Time limits in reinforcement learning.

In International Conference on Machine Learning, pages 4045-4054. PMLR.

