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BBRL foundations

Outline

I Part 1: a standard RL model: Stable Baselines 3 (SB3)

I Limitations of the SB3 model

I Part 2: the BBRL model (inherited from SaLiNa)

I Overview of the main choices

2 / 21



BBRL foundations

Part I: SB3 from the core

The gym interaction loop

I The gym interaction loop is central to evo and RL libraries
I It can be deep inside these libraries, we don’t want users to add code into this

core
I Two options:

I From the environment side: wrappers
I From the outside: callbacks

I Video presenting these SB3 aspects:
https://www.youtube.com/watch?v=I8bskJuI9qU (in french)

I And the corresponding colab:
https://colab.research.google.com/drive/1sBZLs-
GaM8Xx7MsF6sUH7LIj6GwCq5VW?usp=sharing
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Part I: SB3 from the core

Gym env wrappers

I Similar to the Decorator pattern

I Makes it possible to do additional (hidden) things when interacting with
the environment (e.g. RewardScalingWrapper)

I Or to modify the interactions with the environment

I Main interest: the main loop is unaffected
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Part I: SB3 from the core

Callbacks

I Similar to the Visitor pattern

I Some objects deriving from the Callback class are registered

I One callback is the CallbackList (if we need several)

I Example callback: the eval callback

I Good practice: separate evaluation from training
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Part I: SB3 from the core

Data collection: separating evaluation from training

I Training curve: what do we evaluate?

I Dimension everything in time steps
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Part I: SB3 from the core

Wrappers vs Callbacks

I Callbacks require additional code (wrappers don’t)

I Callbacks cannot get data from the main loop (no parameters)

I Better to do things unrelated to the training loop (e.g. eval)
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Part I: SB3 from the core

Data Management

Buffers

I On-policy algorithms use the RolloutBuffer

I Off-policy algorithms use the ReplayBuffer

I REINFORCE uses the EpisodicBuffer

I Need to store data from the main loop
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Part I: SB3 from the core

Data Management

Limitations of the SB3 model

I The main loop must be equipped with callback-related code

I Needs storing into buffers (unnecessary in evolutionary methods)

I Possible alternative: move data collection into dedicated wrappers (large
refactoring)

I SB3 does not support training from multiple environments at a time

I It supports evaluating from several environments at a time (VecEnv)

I SB3 is not appropriate for teaching RL: too many things “under the
hood”, large code, hard to dig in

I Best for using RL as a non-expert (black box approach)
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Part II: the BBRL model

BBRL overview

I BBRL stands for “BlackBoard RL”

I It is a derivation from SaLinA, all properties come from there

I The workspace is a black board where all agents read and write temporal data

I Everything else is an agent

I Agents are pytorch nn.Modules: easy to move to CPU/GPU, to distribute, etc.

I Data is organized into temporal tensors which facilitate gradient processing
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Part II: the BBRL model

RL in BBRL

I By contrast to SaLinA, BBRL is limited to RL

I One agent is the Gym environment: NoAutoResetGymAgent or
AutoResetGymAgent

I Other agents are RL agents

I There might be additional agents (e.g. PrintAgent for debug)

I GymAgents support training and evaluating over several environments
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Part II: the BBRL model

Why NoAutoReset and AutoReset?

I When running an agent in several environments, some environments may
finish sooner than others (e.g. CartPole, when the pole falls)

I What shall we do?

I Wait until all environments end? → NoAutoResetGymAgent

I This is simpler, but a waste of time

I Restart each environment when it finishes? → AutoResetGymAgent

I Raises additional difficulties...
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Part II: the BBRL model

Gym environments: NoAutoReset

I Finished environments repeat their data until the end of all episodes

I This facilitates checking all is finished and collecting results in the end

I use stop variable="env/done"

I Perfect for evaluating an agent over N episodes

I The N episodes are run in parallel
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Part II: the BBRL model

Gym environments: AutoReset

I If all environments restart, we may specify blocks of arbitrary duration

I This will make it possible to learn after each block, more often than with
long episodes

I This will raise other difficulties...

14 / 21



BBRL foundations

Part II: the BBRL model

AutoReset: collecting blocks of data

I When collecting blocks of data, one should not loose the inter-block

transition

I Solution: copy the last data of the previous block
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Part II: the BBRL model

Avoiding learning from inter-episode transitions

I Some transitions correspond to the last data from an episode and the first
data of the next

I The agent should not learn from such transitions (it is teleported)

I SaLinA had bugs with this case

I Solution: reorganize data and remove these transitions

I In practice, call worskspace.get transitions()
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Part II: the BBRL model

Some luck with the transition data structure

I The standard code to get a target value:

I target = reward[: −1] + gamma ∗max q[1 :] ∗must bootstrap[1 :].int()

I In the NoAutoResetGymAgent case:

I In the AutoResetGymAgent case:

I The same formula works for the different structures!

I This is just a lucky choice
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Part II: the BBRL model

get transitions(): more details

I If n env > 1, before get transitions(): [step10 step
2
0 . . . step

nenv
0 ]

I After get transitions(), the vector is broken into pieces:

I Each key of the returned workspace has dimensions [2, n transitions,

key dim ]

I key[0][0], key[1][0] = (step1, step2)# for env 1
key[0][1], key[1][1] = (step1, step2)# for env 2
key[0][2], key[1][2] = (step2, step3)# for env 1
key[0][3], key[1][3] = (step2, step3)# for env 2
...
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Part II: the BBRL model

Must bootstrap?

I The standard code to get a target value:
I target = reward[: −1] + gamma ∗max q[1 :] ∗must bootstrap[1 :].int()

I must bootstrap = torch.logical or(∼ done[1], truncated[1])

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P. (2018) Time limits in reinforcement learning. In International Conference
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Part II: the BBRL model

Standard or Sutton&Barto’s notation?

I Most often (as in my slides), one writes transitions < st, at, rt, st+1 >

I I.e. the reward is at the same time step than the action taken, but not the next
state

I It would make more sense to write < st, at, rt+1, st+1 > (that’s what
Sutton&Barto do, cf. footnote 3 page 54 of the 2018 edition)

I BBRL offers both options:

I Use bbrl.agents.gymb and bbrl.utils.functionalb instead of
bbrl.agents.gyma and bbrl.utils.functional to use the standard notation

I Change the reward index accordingly...
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Part II: the BBRL model

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

21 / 21

Olivier.Sigaud@upmc.fr


BBRL foundations

References

Pardo, F., Tavakoli, A., Levdik, V., and Kormushev, P. (2018).

Time limits in reinforcement learning.
In International Conference on Machine Learning, pages 4045–4054. PMLR.

21 / 21


	Part I: SB3 from the core
	Data Management

	Part II: the BBRL model
	References

